Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Durability Design Method of New Stopper Bush Using New Theory (Friction and Spring) for Electric Power Steering

2014-04-01
2014-01-0046
In the automobile industries, weight reduction has been investigated to improve fuel efficiency together with reduction of CO2 emission. In such circumstance, it becomes necessity to make an electric power steering (EPS) more compact and lightweight. In this study, we aimed to have a smaller and lighter EPS gear size by focusing on an impact load caused at steering end. In order to increase the shock absorption energy without increase of stopper bush size, we propose new theory of impact energy absorption by not only spring function but also friction, and a new stopper bush was designed on the basis of the theory. The profile of the new stopper bush is cylinder form with wedge-shaped grooves, and when the new stopper bush is compressed by the end of rack and the gear housing at steering end, it enables to expand the external diameter and produce friction. In this study, we considered the durability in the proposed profile.
Journal Article

Consideration about Meshing of Worm Gear Based on MUB (Meshing Under Base-Circle) Theory for EPS

2014-04-01
2014-01-0058
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail.
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Journal Article

Development of the Next-Generation Steering System (Development of the Twin Lever Steering for Production Vehicle)

2011-04-12
2011-01-0557
Looking back on steering systems in more than a hundred years that have passed since the introduction of the automobile, it can be seen that original method of controlling cars pulled by animals such as horses was by reins, and early automobiles had a single push-pull bar (tiller steering). That became the steering wheel, and an indirect steering mechanism by rotating up and down caught on. While the steering wheel is the main type of steering system in use today, the team have developed the Twin Lever Steering (TLS) system controlled mainly by bi-articular muscles, making use of advancements in science and technology and bioengineering to develop based on bioengineering considerations as shown in Fig. 1. The objective of that is to establish the ultimate steering operation system for drivers. In the first report, the authors reported on results found by using race-car prototypes as shown in Fig. 2.
Technical Paper

Control Technology of Brake-by-Wire System for Super-Sport Motorcycles

2010-04-12
2010-01-0080
Super-sport motorcycles have shorter wheelbases than other category motorcycles. Due to this, strong braking occasionally causes large pitching motions to occur, including rear-wheel-lift. In order to reduce such pitching motions and achieve an effective braking force, the authors have developed a brake-by-wire system that uses a pressure sensor to detect the braking input pressure and an electric actuator to variably control the hydraulic pressure. This system makes it possible to precisely control the braking force compared with the previous ABS. Large pitching control was performed by the distribution of a front wheel and a rear-wheel braking forces, CBS (Combined Brake System), by using electronic control, and Brake-by-Wire has been suitable for sport riding. As a result, stable braking performance could be obtained without spoiling the handling characteristics of super-sport motorcycles.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

Interconnection Technology for Engine Generators

2003-09-15
2003-32-0053
The development of the 1 kW-class inverter unit with a small engine generator that conforms to “Guideline for the interconnection technology requirements” has succeeded. To connect distributed electrical sources such as wind power generation, photovoltaic generation, or cogeneration to the utility grid, it is necessary to detect demand-side problems including the distributed sources (short circuit, ground fault, troubles in generated voltage or frequency) and to detect problems in the grid (power failure and troubles of voltage or frequency). It is also necessary to protect electric power systems, distributed sources, and electrical appliances. The inverter unit uses both passive and active islanding detection methods. Total distortion factor is reduced to less than 1% by applying two kinds of input current to the power supply unit. Efficiency of the interconnection inverter unit has achieved 91% and total efficiency of power generation of the cogeneration unit has achieved 20%.
Technical Paper

Control Device of Electronically Controlled Fuel Injection System of Air-cooled Engines for Small Motorcycles

2004-03-08
2004-01-0901
In conventional electronically controlled fuel injection systems, when the battery is inadequately charged, the small amount of electric power generated from the alternator by the kick starter operation is consumed by all electrical loads including the battery. This causes a voltage drop, hence the fuel injection system does not function due to a power shortage. To eliminate the power shortage, an installed relay circuit opens all electric loads other than the fuel injection system. This allows the fuel injection system to use all the electric power generated by the kick starter operation aided through using an additionally incorporated condenser. This type of electric power control system has been incorporated into the ECU. Thus, the control system has been realized that permits starting of an engine by using the kick-starter even when the battery is completely discharged.
Technical Paper

Electric Power Control System for a Fuel Cell Vehicle Employing Electric Double-Layer Capacitor

2004-03-08
2004-01-1006
A fuel-cell-vehicle has been provided with an electric-double-layer-capacitor system (capacitor) to act as a back-up power source. The fuel cells and the capacitor have different voltages when the system is started, and for this reason the system could not be reconnected by relays. A VCU (Voltage and current Control Unit) has been positioned in the path of electrical connection between the fuel cells and the capacitor as a method of dealing with this issue. The VCU enables the charging of the capacitor to be controlled in order to equalize the voltage of the two power sources and allow a connection.
Technical Paper

Development of Electric Drive System for New Model Super Sports Hybrid Vehicle

2016-04-05
2016-01-1685
A three-motor hybrid system suitable for a super sports car was developed. This system features high power, light weight and high response, and has high cooling performance for high-load operation such as circuit driving. The power plant drives the rear wheels using the combination of a midship-mounted V6 twin-turbo engine, the direct drive motor of a hybrid system mounted directly on the engine, and a 9-speed dual-clutch transmission (DCT). The front wheels are driven by a twin-motor unit (TMU), and the size and weight of the Intelligent Power Unit (IPU) that supplies electric power to the TMU has been reduced to enable mounting behind the seats inside the cabin. In addition, the IPU uses air-conditioner cooperative cooling to enhance the cooling performance. As a result, assist is performed even during high-load operation.
Technical Paper

Development of Electric Power Steering

1991-01-01
910014
A new electric power steering (EPS) was developed which uses an electric motor to provide assistance. It is a system combinning the latest in power electronics and high power motor technologies. The development was aimed at enhancing the existing hydraulic power steering's energy efficiency, driver comfort as well as increasing active stability. This paper describies the overall concept of EPS and outlines the components and control strategies using electronics. The EPS was tested on a front wheel drive vehicle weighing 1000kg in front axle load. The results showed a 5.5% improvement in fuel economy. The EPS has also achieved returnability that gives the driver more moderate feelings matching the vehicle in action as well as the active stability control strategy for high speed driving.
Technical Paper

The Application of Hardenability Assured Cold Forging Medium Carbon Steels to CVJ Outer Race

1993-03-01
930965
New steels were developed to make cold forgeability and induction hardenability compatible with each other. These new grades contain. 0.05%Si, 0.25%Mn, 0.15%Cr and 15ppmB. The carbon contents are the same as conventional carbon steels, 0.48% and 0.53%. Ferrite strengthening elements, Si and Mn; were decreased to reduce the hardness of the spheroidize annealed materials and, as a result, the flow stress during cold forging. Boron was added to maintain induction hardenability. It was confirmed that new grades show cold forgeability superior to that of conventional carbon steels such as SAE 1049 and 1053, while maintaining the same case depth during induction hardening. These new grades have been applied to the production of cuter races for constant velocity joints, in which spheroidize annealed bars are cold forged in five stages followed by induction hardening. In this process, carburizing steels can be replaced by these grades, and an in-line process can be established.
Technical Paper

Performance of Antilock Brakes with Simplified Control Technique

1983-02-01
830484
The four-wheel controlling antilock brake system is considered as an effective safety device because of its capability to help a driver to maintain vehicle stability and steerability during panic braking even on a slippery road surface. This report deal with a simplified control technique which simultaneously controls right and left wheels on each front or rear axle. Both front wheels are controlled in response to a signal from the front wheel with the least slip, while both rear wheels are controlled in response to a signal from the rear wheel that has the greatest slip. A series of tests proved that this technique ensures vehicle steering ability even during panic braking. On a gravel and other rough roads, this system provided shorter stopping distance compared to other four-wheel antilock systems. It has been generally assumed that stopping distance extension on such roads is only one disadvantage of the four-wheel antilock brake system.
Technical Paper

Four Wheel Steering System with Rear Wheel Steer Angle Controlled as a Function of Steering Wheel Angle

1986-02-01
860625
This paper discusses the desired steer angle characteristics of rear wheels in the new concept of four wheel steering system in which the rear wheels are controlled as a function of the steering wheel angle in a manner that the rear wheels are steered in the same direction as the front wheels when the steering wheel angle is kept within a small range while the rear wheels are steered in the opposite direction to the front in the case the steering wheel angle is steered over a larger range. This paper also indicates the basic principle of the four wheel steering system and lists items for consideration in determining the function, and then presents a variety of effects the new steering system produces on operating performances based upon a series of proving ground tests.
Technical Paper

A Vibration Transfer Reduction Technique, Making Use of the Directivity of the Force Transmitted from Road Surface to Tire

2000-03-06
2000-01-0096
While there has been an empirical rule telling suspension designers that a slight rearward inclination of the wheel travel locus could improve ride harshness performance, there has not been any quantitative proof on it, to the extent of authors' knowledge. The authors planned to analyze the phenomenon by quantitatively measuring the force transmission via suspension, to find out that the amplitude of longitudinal force transmission to the sprung mass changes significantly depending on the above inclination angle. Further investigation has lead to a conclusion that the force transmission from ground to tire has a sharp directivity. And that the relationship between this direction and the direction of wheel travel is a dominant factor, which decides the magnitude of longitudinal force transmission to the sprung mass. In order to make use of the finding, the optimal wheel center locus inclination in side view has been studied, to minimize the longitudinal force transmission.
Technical Paper

Development of a Lightweight and Compact 1kVA-Class Portable Generator

1999-09-28
1999-01-3304
The development of the lightweight and compact EU1000i generator with a maximum output of 1kVA is presented. The technology applied to achieve the required levels of exhaust emission, fuel consumption and noise, and to provide a stable electrical power supply with low waveform distortion is described. The technology comprises of four elements: a high-speed, multi-pole, external rotor type alternator, a microcomputer-controlled sine wave inverter, a compact high-speed 4-stroke engine with electronic speed governing, and a lightweight frame with a two-level noise-damping system. Combination of these four elements of technology has achieved 50% less weight, 25-30% lower fuel consumption, and 7-9dB(A) less noise than the previous model. The emission levels of CO and of NOx + HC are also 30% and 65% lower than the 2000 CARB regulations.
Technical Paper

Development of Advanced Brake System for Small Motorcycles

2015-09-27
2015-01-2680
Combined Brake System for small motorcycles has been developed. In small motorcycles, some models have a hydraulic disc brake both in the front and rear wheels but many of them have a hydraulic disc front brake and a mechanical drum rear brake. Accordingly, it was necessary to develop a new system to link the hydraulic system with the mechanical system to allow an application of Combined Brake System to these models. In this paper, a CBS having a new configuration is described where a disc brake and a drum brake are linked in a simple lever structure of an input force distributor, and an inhibitor spring at the foot pedal. With this mechanism equipped, the distribution of brake forces is controlled. When a large input force is applied, a large proportion of brake force is applied to the front brake to obtain adequate deceleration. When a mild input force is applied, which is frequently operated, the brake force proportion is large in the rear compared to the front.
Technical Paper

Development of Electric Motorcycle for Business Use

2011-11-08
2011-32-0556
In recent years, the reduction of CO₂ emissions is under way, and the expectancy for electrical power is getting bigger for motorcycles as well. This time, an electric motorcycle with good driving performance, adequate range and quick charging performances for business use has been developed using a small battery. The travel modes have been investigated for business applications of delivery services to classify the traveling patterns and the objectives have been settled based on them. The energy efficiency has been improved by the application of the smallest amount of battery and by the integrated power unit configuration. With this achievement, the range of 34 km (at a constant speed of 30 km/h) has been realized while maintaining the 12-degree hill-climbing departure performance when loaded with a rider and a 30 kg load, which is the requirement of performance for business use.
Journal Article

Study on Wheel Stiffness Considering Balance between Driving Stability and Weight

2015-04-14
2015-01-1755
This paper studies various wheel stiffness configurations, with the aim of enhancing driving stability while minimizing the increase in weight associated with an increase in stiffness. Reinforcement was added to the wheel disk and the wheel rim of standard aluminum wheels for passenger vehicles in order to produce four wheels with different stiffness configurations. The effects of disk stiffness and rim stiffness on tire contact patch profiles and driving stability were quantitatively evaluated. From the results of tests with the four wheels, it was observed that disk stiffness and rim stiffness have differing effects on tire contact patch profiles, and on driving stability. Disk stiffness influences especially tire contact patch length, and tire contact patch length influences especially maneuverability in driving stability. Rim stiffness influences especially tire contact patch area, and tire contact patch area influences especially stability in driving stability.
X