Refine Your Search

Topic

Author

Search Results

Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Development of Feedback-Based Active Road Noise Control Technology for Noise in Multiple Narrow-Frequency Bands and Integration with Booming Noise Active Noise Control System

2015-04-14
2015-01-0660
When a vehicle is in motion, noise is generated in the cabin that is composed of noise in multiple narrow-frequency bands and caused by input from the road surface. This type of noise is termed low-frequency-band road noise, and its reduction is sought in order to increase occupant comfort. The research discussed in this paper used feedback control technology as the basis for the development of an active noise control technology able to simultaneously reduce noise in multiple narrow-frequency bands. Methods of connecting multiple single-frequency adaptive notch filters, a type of adaptive filter, were investigated. Based on the results, a method of connecting multiple filters that would mitigate mutual interference caused by different controller transmission characteristics was proposed.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
Journal Article

Development of Li-ion Battery Control Technology for HEV

2015-04-14
2015-01-0251
The mounting of lithium-ion batteries (LIB) in hybrid electric vehicles (HEV) calls for the configuration of highly robust control systems. When mounting LIBs in the vehicle, it is important to accurately ascertain and precisely control the state of the battery. In order to achieve high durability, it is important to configure highly reliable systems capable of dependably preventing overcharging as well as to have control technology based on software that can contribute to extended battery life. The system configuration applies an overcharge prevention system that uses voltage detection with an emphasis on reliability. Furthermore, a method for varying the range of state of charge (SOC) control in the vehicle according to the battery state is implemented to assure durability. In order to achieve this, battery-state detection technology was developed for the purpose of correctly detecting and judging the battery state.
Journal Article

Degradation Analysis of Pouch Cell Using High-Energy Cathode Material for Advanced Lithium-ion Battery

2015-04-14
2015-01-1193
Lithium-rich layered oxide, expressed as xLi2MnO3-(1-x) LiMO2 (M = Ni, Co, Mn, etc.), exhibits a high discharge capacity of 200 mAh/g or more and a high discharge voltage at a charge of 4.5 V or more. Some existing reports on cathode materials state that lithium-rich layered oxide is currently the most promising candidate as an active material for high-energy-density lithium-ion cells, but there are few reports on the degradation mechanism. Therefore, this study created a prototype cell using a lithium-rich layered cathode and a graphite anode, and analyzed the degradation mechanism due to charge and discharge. In order to investigate the causes of degradation, changes in the bulk structure and surface structure of the active material were analyzed using high-resolution X-ray diffraction (HRXRD), a transmission electron microscope (TEM), X-ray absorption fine structure (XAFS), and scanning electron microscope/energy dispersive X-ray spectroscopy (SEM-EDX).
Journal Article

Development of Electric Powertrain for CLARITY PLUG-IN HYBRID

2018-04-03
2018-01-0415
Honda has developed the 2018 model CLARITY PLUG-IN HYBRID. Honda’s new plug-in hybrid is a midsize sedan and shares a body platform with the CLARITY FUEL CELL and the CLARITY ELECTRIC. The vehicle’s electric powertrain boosts driving performance as an electric vehicle (EV) over Honda’s previous plug-in hybrid. The CLARITY PLUG-IN HYBRID’s electric powertrain consists of a traction motor and generator built into the transmission, a Power Control Unit (PCU) positioned above the transmission, an Intelligent Power Unit (IPU) fitted under the floor, and an onboard charger fitted below the rear trunk. The PCU integrates an inverter that drives the traction motor, an inverter that drives the generator, and a DC-DC converter to boost battery voltage (referred to as a “Voltage Control Unit (VCU)” below).
Journal Article

Development of New Hydrogen Fueling Method for Fuel Cell Motorcycle

2017-03-28
2017-01-1184
A new hydrogen fueling protocol named MC Formula Moto was developed for fuel cell motorcycles (FCM) with a smaller hydrogen storage capacity than those of light duty FC vehicles (FCV) currently covered in the SAE J2601 standard (over than 2kg storage). Building on the MC Formula based protocol from the 2016 SAE J2601 standard, numerous new techniques were developed and tested to accommodate the smaller storage capacity: an initial pressure estimation using the connection pulse, a fueling time counter which begins the main fueling time prior to the connection pulse, a pressure ramp rate fallback control, and other techniques. The MC Formula Moto fueling protocol has the potential to be implemented at current hydrogen stations intended for fueling of FCVs using protocols such as SAE J2601. This will allow FCMs to use the existing and rapidly growing hydrogen infrastructure, precluding the need for exclusive dispensers or stations.
Journal Article

Multi-Variable Air-Path Management for a Clean Diesel Engine Using Model Predictive Control

2009-04-20
2009-01-0733
Recently, emission regulations have been strict in many countries, and it is very difficult technical issue to reduce emissions of diesel cars. In order to reduce the emissions, various combustion technologies such as Massive EGR, PCCI, Rich combustion, etc. have been researched. The combustion technologies require precise control of the states of in-cylinder gas (air mass flow, EGR rate etc.). However, a conventional controller such as PID controller could not provide sufficient control accuracy of the states of in-cylinder gas because the air-pass system controlled by an EGR valve, a throttle valve, a variable nozzle turbo, etc. is a multi-input, multi-output (MIMO) coupled system. Model predictive control (MPC) is well known as the advanced MIMO control method for industrial process. Generally, the sampling period of industrial process is rather long so there is enough time to carry out the optimization calculation for MPC.
Journal Article

Development of a New Two-Motor Plug-In Hybrid System

2013-04-08
2013-01-1476
A highly efficient two-motor plug-in hybrid system is developed to satisfy the global demands of CO2 reduction. This system switches three operation modes, what is called “EV Drive”, “Hybrid Drive” and “Engine Drive”, to maximize fuel efficiency according to the driving condition of the vehicle. Practical plug-in EV (Electric Vehicle) capability is also realized by adding a high-power on-board charger and a high capacity Li-ion battery to the original system. The outlines of the system components including a newly developed Atkinson cycle engine, a highly efficient electric coupled CVT (Continuously Variable Transmission) with built-in motor and generator, an integrated PCU (Power Control Unit) and an exclusive battery for plug-in HEV (Hybrid Electric Vehicle) are described in this paper. In addition to the switching of three driving modes and the efficiency improvement of each device, cooperative control of the hybrid system is introduced.
Technical Paper

Development of the Variable Valve Timing and Lift (VTEC) Engine for the Honda NSX

1991-01-01
910008
The Honda variable valve timing and lift electronic control system (VTEC) is incorporated in the engine of the NSX sports car that is scheduled for sales in Europe this year. In the process of advancement of Honda's engine technology, VTEC was developed for much higher output and higher efficiency. This is actually the first system in the world that can simultaneously switch the timing and lift of the intake and exhaust valves. This system has made improvements in maximum output at high rpm, and also improved the low rpm range, such as idling stability and starting capability.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Study of Power Generation Loss Decrease in Small Gas Engine Cogeneration

2008-09-09
2008-32-0044
Power generation systems employed in small gas engine cogeneration were examined to compare losses in the converter, which converts three-phase alternator power to direct current (DC) voltage, and losses in the inverter, which converts power to high-quality alternating current (AC) voltage that can be connected into electric utility power lines. It is a characteristic of alternators that their efficiency and output voltage decline in the heavy load range. It was found, therefore, that step-down methods using thyristors operate in a low-efficiency range in order to provide a satisfactory supply of the targeted DC output voltage. Use of switching regulator methods, on the other hand, can generate the target voltage by regulating a switching device after first storing the alternator output in a choke coil. It was found, therefore, that these use the high-efficiency range of the alternator. The converter was found to have a resulting loss decrease of 19.4 W.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

Control Device of Electronically Controlled Fuel Injection System of Air-cooled Engines for Small Motorcycles

2004-03-08
2004-01-0901
In conventional electronically controlled fuel injection systems, when the battery is inadequately charged, the small amount of electric power generated from the alternator by the kick starter operation is consumed by all electrical loads including the battery. This causes a voltage drop, hence the fuel injection system does not function due to a power shortage. To eliminate the power shortage, an installed relay circuit opens all electric loads other than the fuel injection system. This allows the fuel injection system to use all the electric power generated by the kick starter operation aided through using an additionally incorporated condenser. This type of electric power control system has been incorporated into the ECU. Thus, the control system has been realized that permits starting of an engine by using the kick-starter even when the battery is completely discharged.
Technical Paper

Electric Power Control System for a Fuel Cell Vehicle Employing Electric Double-Layer Capacitor

2004-03-08
2004-01-1006
A fuel-cell-vehicle has been provided with an electric-double-layer-capacitor system (capacitor) to act as a back-up power source. The fuel cells and the capacitor have different voltages when the system is started, and for this reason the system could not be reconnected by relays. A VCU (Voltage and current Control Unit) has been positioned in the path of electrical connection between the fuel cells and the capacitor as a method of dealing with this issue. The VCU enables the charging of the capacitor to be controlled in order to equalize the voltage of the two power sources and allow a connection.
Technical Paper

The Effects of Engine Speed and Injection Pressure Transients on Gasoline Direct Injection Engine Cold Start

2002-10-21
2002-01-2745
Results are presented from an experimental study of the effects of engine speed and injection pressure transients on the cold start performance of a gasoline direct injection engine operating on iso-octane. The experiments are performed in an optically-accessible single-cylinder research engine modified for gasoline direct injection operation. In order to isolate the effects of the engine speed and injection pressure transients, three different cold start simulations are used. In the first cold start simulation the engine speed and injection pressure are constant. In the second cold start simulation the injection pressure is constant while the engine speed transient of an actual cold start is simulated. In the third cold start simulation both the engine speed and the injection pressure transients of an actual cold start are simulated.
Technical Paper

Honda's 5 Speed All Clutch To Clutch Automatic Transmission

2002-03-04
2002-01-0932
Honda has developed a new 5 speed all clutch to clutch automatic transmission (AT) as the next generation AT for passenger cars and succeeded in shortening the overall length, increasing the efficiency and improving the shift feeling by enhancing the intelligence of the system. This paper describes the mechanical structure, the new direct control system and the newest shift control method of the AT system.
Technical Paper

The Development of a High Fuel Economy and High Performance Four-Valve Lean Burn Engine

1992-02-01
920455
The reduction of fuel consumption is of great importance to automobile manufacturers. As a prospective means to achieve fuel economy, lean burn is being investigated at various research organizations and automobile manufacturers and a number of studies on lean-burn technology have been reported to this date. This paper describes the development of a four-valve lean-burn engine; especially the improvement of the combustion, the development of an engine management system, and the achievement of vehicle test results. Major themes discussed in this paper are (1) the improvement of brake-specific fuel consumption under partial load conditions and the achievement of high output power by adopting an optimized swirl ratio and a variable-swirl system with a specially designed variable valve timing and lift mechanism, (2) the development of an air-fuel ratio control system, (3) the improvement of fuel economy as a vehicle and (4) an approach to satisfy the NOx emission standard.
Technical Paper

New 1.0L I3 Turbocharged Gasoline Direct Injection Engine

2017-03-28
2017-01-1029
To comply with the environmental demands for CO2 reduction without compromising driving performance, a new 1.0 liter I3 turbocharged gasoline direct injection engine has been developed. This engine is the smallest product in the new Honda VTEC TURBO engine series (1), and it is intended to be used in small to medium-sized passenger car category vehicles, enhancing both fuel economy through downsizing, state-of-the-art friction reduction technologies such as electrically controlled variable displacement oil pump and timing belt in oil system, and also driving performance through turbocharging with an electrically controlled waste gate. This developed engine has many features in common with other VTEC TURBO engines such as the 1.5 liter I4 turbocharged engine (2) (3), which has been introduced already into the market.
Technical Paper

Development of Hybrid System for 2011 Compact Sedan

2011-04-12
2011-01-0865
Technologies related to electrical systems for the 2011 hybrid model have been developed. In order to increase energy recovery during driving, improvements were made compared to the 2006 model in terms of motor output increase and high-efficiency range expansion, and considerations were also given to motor NV (noise and vibration). In consideration of vehicle control associated with the use of lithium-ion batteries (LIBs) as well as reliability, a system to control effective use of battery performance was developed which involves detection of battery conditions. Control of energy management was optimized compared to nickel metal hydride (NiMH) batteries through the use of higher-output LIBs and a high-output motor.
X