Refine Your Search

Topic

Search Results

Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
Technical Paper

Elucidation of the Sulfide Corrosion Mechanism in Piston Pin Bushings

2020-04-14
2020-01-1079
Recent trends to downsize engines have resulted in lighter weight and greater compactness. At the same time, however, power density has increased due to the addition of turbocharger and other such means to supplement engine power and torque, and this has increased the thermal and mechanical load. In this kind of environment, corrosion of the copper alloy bushing (piston pin bushing) that is press-fitted in the small end of the connecting rod becomes an issue. The material used in automobile bearings, of which the bushing is a typical example, is known to undergo sulfidation corrosion through reaction with an extreme-pressure additive Zinc Dialkyldithiophosphate (ZnDTP) in the lubricating oil. However, that reaction path has not been clarified. The purpose of the present research, therefore, is to clarify the reaction path of ZnDTP and copper in an actual engine environment.
Journal Article

New Three-dimensional Piston Secondary Motion Analysis Method Coupling Structure Analysis and Multi Body Dynamics Analysis

2011-11-08
2011-32-0559
A new piston secondary motion analysis has been developed that accurately predicts piston strength and the slap noise that occurs when the engine is running. For this secondary motion analysis, flexible bodies are used for the models of the piston, cylinder and cylinder head. This makes it possible to quantify the deformations and secondary motion occurring in each area of the engine. The method is a coupled analysis of the structure analysis and the multi body dynamics analysis. The accuracy of the results obtained in the new analysis method was verified by comparing them to measurement data of piston skirt stress and piston secondary motion taken during firing. To measure piston skirt stress, a newly developed battery-powered telemetric measurement system was used. The calculation results were close to the measurement results both for stress and for secondary motion from low to high engine speed.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Development Procedure for Interior Noise Performance by Virtual Vehicle Refinement, Combining Experimental and Numerical Component Models

2001-04-30
2001-01-1538
This paper summarizes the development of a predictive vibro-acoustic full vehicle model of a mid-size sedan and focuses on the engineering analysis procedures used to evaluate the design performance related to engine induced noise and vibration. The vehicle model is build up from a mixture of test-based and finite element component models. FRF Based Substructuring is used for their assembly. The virtual car model is loaded by engine forces resulting from indirect force identification. This force-set includes combustion, inertia, piston slap and crank bearing forces, for engine harmonics from 0.5 to 10th order. Such forced response analysis yields vibration levels at every component, at every interface between components, and interior noise predictions. The target is to provide the vehicle NVH manager with the insight required to identify major causes for peak noise levels and to set targets and develop an action plan for every component design team.
Technical Paper

Quantitative Analysis of Leakage Suppression of DLC Coating on Piston Ring

2017-03-28
2017-01-0457
Piston ring wear in gasoline engine induces deterioration of emissions performance due to leakage of blow-by gas, instability of idling caused by reduced compression in combustion chamber, and to generate early degeneration of engine oil. We examined anti-wear performance of DLC coating on piston ring, which had been recently reported as an effective method for improving the abrasion resistance. As a result, wear rate remained low under the condition of DLC existence on sliding surface, but once DLC was worn out completely, wear of the piston ring was accelerated and its life became shorter than piston ring without DLC. In this research, we designed reciprocating test apparatus that operates at much higher velocity range, and characterized the frictional materials of the piston ring and sleeve and the DLC as a protective film, a vapor phase epitaxy (VPE) was actively used as a means to form certain level of convex and concave shape on its surface.
Technical Paper

Prediction of Piston Skirt Scuffing via 3D Piston Motion Simulation

2016-04-05
2016-01-1044
This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
Technical Paper

Development of a New 2.0L I4 Turbocharged Gasoline Direct Injection Engine

2016-04-05
2016-01-1017
It is important to take action regarding environmental issues on a global scale, and automakers are adding downsized turbocharged engines to their line-ups as a means of reducing CO2 emissions, particularly in Europe. Honda has recently announced a next-generation powertrain series that realizes a good balance between environmental performance and driving pleasure. As part of this series, the company has developed a downsized and turbocharged 2.0L gasoline direct injection engine. This is a high-powered sports car engine positioned in the European “hot hatch” category. The development balanced engine power with good environmental performance.
Technical Paper

Development of a New 1.5L I4 Turbocharged Gasoline Direct Injection Engine

2016-04-05
2016-01-1020
A 1.5 L downsizing turbocharged engine was developed to achieve both driving and environmental performance. The engine is intended to replace 1.8 - 2.4 L class NA engines. In downsizing turbocharged engines, mixture homogeneity is important for suppressing knocking and emission reduction. Particularly under high load, creating rapid combustion and a homogeneous mixture are key technologies. The authors used a long-stroke direct injection engine, which has outstanding rapid combustion and thermal efficiency, as a base engine meeting these requirements. They combined this with a high-tumble port and shallow-dish piston intended to support tumble flow. The combination enhanced flow within the cylinder. The combustion system was built to include a sodium-filled exhaust valve to reduce knocking and a multi-hole injector (six holes) for mixture homogeneity and to reduce the fuel wall wetting.
Technical Paper

New Proposal of Piston Skirt Form using Multi Objective Optimization Method

2011-04-12
2011-01-1079
A multi-objective optimization model using a piston behavior simulation for the prediction of NV, friction and scuffing was created. This model was used to optimize the piston skirt form, helping to enable well-balanced forms to be sought. Optimization calculations, involving extended analyses and numerous design variables, conventionally necessitate long calculation times in order to achieve adequate outcomes. Because of this, in the present project data was converted into functions in order to help enable the complex piston skirt form to be expressed using a small amount of coefficients. Using the limit values for manufacturability and the degree of contribution to the target functions, the scope of design variables was restricted, and the time necessary for the analysis was significantly reduced. This has helped to enable optimal solutions to be determined within a practical time frame.
Technical Paper

Study of Piston Pin Noise of Semi-Floating System

2012-04-16
2012-01-0889
This paper summarizes the piston pin noise mechanism and show the way to reduce noise level of semi-floating system. A mechanism of piston pin noise of semi-floating system was clarified by measurement of piston and piston pin behavior and visualization of engine oil mist around piston and piston pin. Piston and piston pin behavior was measured by accelerometer and eddy current type gap sensor with linkage system at the actual engine running condition. Engine oil behavior was visualized and measured its flow vector by Particle Tracking Velocimetry (PTV). For PTV, engine oil mist particle image was taken by high speed camera with fiber scope attached to linkage system. From themeasurement, it was cleared that engine oil doesn't reach to piston hole from undersurface of piston land and come rushing out from piston broach via groove. The result shows that lacking of engine oil between piston and piston pin makes noise larger.
Technical Paper

Optimization of Semi-Floating Piston Pin Boss Formed by Using Oil-Film Simulations

2012-04-16
2012-01-0908
This paper describes the oil-film bearing analysis simulation was utilized for the optimization of pin boss form which reduces a piston-pin noise. It is clear from the mechanism analysis of the piston-pin noise which is the last research that an oil-film flow inside a pin boss is an important factor for pin noise reduction. So, in this research, the oil-film simulation of the piston-pin-boss bearing part was performed using oil-film bearing analysis tool. After setting up the simulation conditions of the oil-film bearing part so that actual pin behavior and high correlativity might be shown, a parameter, effective hydrodynamic angular velocity, and an oil flow rate of change suitable for evaluation of a pin noise were found out. The pin noise in semi floating piston was reduced to the same level as full floating type by applying pin boss form to which each evaluation parameter becomes the optimal to a piston.
Technical Paper

Development of Elliptical Piston Engine for Motorcycle

1993-03-01
930224
Honda developed a 750cm3 V-4 engine adopting an elliptical piston, and began selling the “NR” motorcycle with the engine installed in 1992. The adoption of an elliptical piston and cylinder achieved a compact layout of eight valves, which consists of four intake valves and four exhaust valves per cylinder. This paper explains the features of an engine with such a layout, focusing on the following: 1) Multiple valves and short-stroke enable the 750cm3 engine to achieve 15,000rpm. 2) The engine is more compact and lightweight than an engine having the same displacement, and more powerful than one with twice as many cylinders (8 cylinders). Also, this paper describes the techniques giving improved blowby gas and oil consumption characteristics as related to the sealing property of the piston, cylinder and piston ring and achieving performance equivalent to a conventional motorcycle engine.
Technical Paper

Research Into Surface Improvement for Low Friction Pistons

2005-04-11
2005-01-1647
1 A new surface modification heat treatment technology called Wonder Process Craft which is different from plating and coating, was applied to the skirt section, which is the sliding surface of the piston in an internal combustion engine. This was intended to improve fuel economy and mechanical characteristics by reducing sliding resistance. In the application of solid lubrication, this treatment does not require the usage of binder, which was necessary for conventional coating, leading to the highest level achievable for the low sliding resistance effect inherent of solid lubrication. Since this treatment does not involve any change in significant dimensions, shapes, surface roughness, and so on, applying this treatment is easy. The persistence of the effect, productivity and recyclability of waste and emissions during treatment were also taken into account.
Technical Paper

Development of High-strength Piston Material with High Pressure Die Casting

2006-04-03
2006-01-0986
The technology for a new, high-strength piston material has been developed by using high pressure die casting (HPDC) method, which had a rapid rate of solidification. This method allowed the amount of Ni added to be increased to 5.5 mass%, raising the fatigue strength of the new material at temperatures of 523 K or higher by a factor of 1.5 over that of a conventional material made by gravity die casting (GDC). In addition, application of vacuum to the die cavity and using additional pressure enabled quality exceeding that of conventional GDC pistons. Pistons made from the newly developed material decreased engine friction by 4.4% and increased fuel efficiency by 2.2% in engine bench testing.
Technical Paper

Influence of Shock Absorber Friction on Vehicle Ride-Comfort Studied by Numerical Simulation Using Classical Single Wheel Model

2018-04-03
2018-01-0692
Along with the suspension improvement in these two decades, it is well known that the suspension friction force became one of major parameters to affect ride comfort performance. However, it was difficult to carry out quantitative prediction on ride comfort improvement against friction force change with high correlation. It was difficult to analyze correlation between actual vehicle performance and simulation since there were difficulties in controlling damping force and friction individually. On the other hand, magneto-rheological shock absorber (MR Shock) has had several applications and widely spread to passenger vehicles. The large variation and high response of damping force especially in slow piston speed region contributes to achieve an excellent vehicle dynamics performance. However, MR Shock shows the high friction characteristics, due to the unique sliding regime of internal parts. It is said that this high friction characteristic is causing obstacles in ride-comfort.
Technical Paper

Effect of Surface Irregularities of Piston Ring and Sleeve Materials in High-Speed Reciprocating Test

2015-04-14
2015-01-0681
The reciprocating frictional test is a common approach for screening the materials of the piston and sleeve of an automobile engine. The frictional speed of this test is, however, limited mainly by the vibration of test apparatus due to the absence of damping factors in engines. Considering that the frictional velocity between the piston and sleeve reaches around 20 m/s, common test conditions at less than 2 m/s are not sufficient to understand the real phenomena at a frictional interface. We therefore developed a high-speed reciprocating test apparatus that can operate at a much higher speed range and examined two materials used for piston rings and sleeves. For the piston ring material, nitrided SUS440C was used. Plates were made of centrifugal cast iron FC250 or cast aluminum AC2B, which were coated with Nikasil. The experimental results showed that the lubrication regimes of the two plate materials were different even at the same reciprocating speeds.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 2, Cooling Using Heat Pipes

2015-04-14
2015-01-1649
In our preceding report [1], we showed that the thermal conductivity of a heat pipe dramatically improves during high-speed reciprocation. However, this cooling method has rarely been applied to car engine pistons because the thermal conductivity of commercially available heat pipes does not increase easily even if the pipe is subjected to high-speed reciprocation. In consideration of the data from our preceding report, we decided to investigate heat pipe designs for car engine pistons, propose an optimum design, and conduct thermal analysis of the design. As a result, we found that it is possible to transport heat from the central piston head area, where cooling is most needed, to the piston skirt area, suggesting the possibility of efficient cooling.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 1, Basic Test for Achieving High Heat Transfer Coefficient

2015-04-14
2015-01-1653
Car engine piston cooling is an important technology for improving the compression ratio and suppressing the deformation of pistons. It is well known that thermal conductivity improves dramatically through the use of heat pipes in computers and air conditioners. However, the heat pipes in general use have not been used for the cooling of engines because the flow of gas and liquid is disturbed by vibration and the thermal conductivity becomes excessively low. We therefore developed an original heat pipe and conducted an experiment to determine its heat transfer coefficient using a high-speed reciprocation testing apparatus. Although the test was based on a single heat pipe unit, we succeeded in improving the heat transfer coefficient during high-speed reciprocation by a factor of 1.6 compared to the heat transfer coefficient at standstill. This report describes the observed characteristics and the method of verification.
X