Refine Your Search

Topic

Author

Search Results

Video

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-11-01
A new index for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U* , which expresses the connection strength between a load point and an arbitrary point within the structure enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Presenter Tadashi Naito, Honda R&D Co., Ltd.
Journal Article

Detect the Imperceptible Drowsiness

2010-04-12
2010-01-0746
Prediction of drowsiness based on an objective measure is demanded in machine and vehicle operations, in which human error may cause fatal accidents. Recently, we focused on the pupil which is controlled by the autonomic nervous system, easily and non-invasively observable from the outside of the body. Prior to the large low frequency pupil-diameter fluctuation, which is known to associate with drowsiness, a Gradual Miosis was observed in most subjects. During this miosis period, the subjects were not yet aware of their drowsiness. We have developed a software system which automatically detects the Gradual Miosis in real time.
Journal Article

Consideration about Meshing of Worm Gear Based on MUB (Meshing Under Base-Circle) Theory for EPS

2014-04-01
2014-01-0058
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail.
Journal Article

Development of γ′-Fe4N Phase Control Technology and Low-Carbon Alloy Steel for High-Strength Nitrided Gear

2015-04-14
2015-01-0519
A new nitriding technology and material technology have been developed to increase the strength of microalloyed gears. The developed nitriding technology makes it possible to freely select the phase composition of the nitride compound layer by controlling the treatment atmosphere. The treatment environment is controlled to exclude sources of supply of [C], and H2 is applied as the carrier gas. This has made it possible to control the forward reaction that decomposes NH3, helping to enable the stable precipitation of γ′-phase, which offers excellent peeling resistance. A material optimized for the new nitriding technology was also developed. The new material is a low-carbon alloy steel that makes it possible to minimize the difference in hardness between the compound layer and the substrate directly below it, and is resistant to decline in internal hardness due to aging precipitation in the temperature range used in the nitriding treatment.
Journal Article

Fracture Prediction for Automotive Bodies Using a Ductile Fracture Criterion and a Strain-Dependent Anisotropy Model

2015-04-14
2015-01-0567
In order to reduce automobile body weight and improve crashworthiness, the use of high-strength steels has increased greatly in recent years. An optimal combination of both crash safety performance and lightweight structure has been a major challenge in automobile body engineering. In this study, the Cockcroft-Latham fracture criterion was applied to predict the fracture of high-strength steels. Marciniak-type biaxial stretching tests for high-strength steels were performed to measure the material constant of the Cockcroft-Latham fracture criterion. Furthermore, in order to improve the simulation accuracy, local anisotropic parameters based on the plastic strain (strain dependent model of anisotropy) were measured using the digital image grid method and were incorporated into Hill's anisotropic yield condition by the authors. In order to confirm the validity of the Cockcroft-Latham fracture criterion, uniaxial tensile tests were performed.
Journal Article

Development of Feedback-Based Active Road Noise Control Technology for Noise in Multiple Narrow-Frequency Bands and Integration with Booming Noise Active Noise Control System

2015-04-14
2015-01-0660
When a vehicle is in motion, noise is generated in the cabin that is composed of noise in multiple narrow-frequency bands and caused by input from the road surface. This type of noise is termed low-frequency-band road noise, and its reduction is sought in order to increase occupant comfort. The research discussed in this paper used feedback control technology as the basis for the development of an active noise control technology able to simultaneously reduce noise in multiple narrow-frequency bands. Methods of connecting multiple single-frequency adaptive notch filters, a type of adaptive filter, were investigated. Based on the results, a method of connecting multiple filters that would mitigate mutual interference caused by different controller transmission characteristics was proposed.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Journal Article

Research on Mechanism of Change in Suspension Transfer Force in Relation to Low-Frequency Road Noise

2015-04-14
2015-01-0667
Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Journal Article

Development of Tool for Evaluation of Automotive Conformity of FM Receivers Using Two-Stage Method

2015-04-14
2015-01-0225
The suitability of FM radio receivers for automotive applications has conventionally been evaluated by evaluating the reception characteristics of broadcast waves while conducting repeated driving tests in a special test environment. Because the evaluation of sound quality while driving relies upon the auditory judgment of a limited range of test subjects, these tests present issues in terms of the reproducibility and objectivity of the evaluations. In order to resolve these issues, a method of evaluating the suitability of FM receivers for automotive applications through the creation of a virtual radio wave environment on a PC was developed (this has been termed the “Two-Stage method”). In the research described in this paper, the Two-Stage method was used to analyze the effect of multipath distortion on FM receivers when driving through arbitrary radio wave propagation environments.
Journal Article

Technique for Predicting Powertrain Self-Excited Vibration at Vehicle Start-Up

2015-04-14
2015-01-1674
A clutch FEM model was created to quantitatively understand the operation and dynamic friction characteristics of the facing materials. And a simulation model for dynamic behavior analysis of the torque transmission characteristics from a transmission that incorporates drivetrain damping characteristics to the vehicle body was constructed. The data of the actual vehicle was also measured when vibration occurs and loss torque is generated by friction in the drivetrain, and damping characteristics were determined from the measurement values. In order to confirm the usefulness of this method, the construction of a clutch that suppresses self-excited vibration was examined by simulation and the reduction of vibration in an actual vehicle was confirmed.
Journal Article

Vibration Reduction in Motors for the SPORT HYBRID SH-AWD

2015-04-14
2015-01-1206
A new motor has been developed that combines the goals of greater compactness, increased power and a quiet drive. This motor is an interior permanent magnet synchronous motor (IPM motor) that combines an interior permanent magnet rotor and a stator with concentrated windings. In addition, development of the motor focused on the slot combination, the shape of the magnetic circuits and the control method all designed to reduce motor noise and vibration. An 8-pole rotor, 12-slot stator combination was employed, and a gradually enlarged air gap configuration was used in the magnetic circuits. The gradually enlarged air gap brings the centers of the rotor and the stator out of alignment, changing the curvature, and continually changing the amount of air gap as the rotor rotates. The use of the gradually enlarged air gap brings torque degradation to a minimum, and significantly reduces torque fluctuation and iron loss of rotor and stator.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Journal Article

Incoming Wave Estimation Characteristics by MUSIC Method Using a Virtual Array Antenna in Urban Reception Conditions

2016-04-05
2016-01-0077
We developed “Two-Stage Method” that makes it possible to evaluate the automotive suitability of FM receivers by generating a virtual radio wave environment on a PC. The major technological challenge for the Two-Stage Method was reproducing an actual radio wave environment on PC. It was necessary to estimate the characteristics of the FM radio wave environment in tests using the Multiple Signal Classification (MUSIC) method. However, when the MUSIC method is applied to FM reception, restrictions in factors including the number of array antenna elements and the occupied bandwidth result in issues of separation performance in relation to multipath waves in urban environments. We therefore developed a MUSIC Method using a virtual array antenna, making it possible to create combinations of numbers of array and sub-array elements as desired, thus boosting multipath wave separation performance. This development was reported at the 2015 SAE World Congress.
Journal Article

Development and Application of FM Multipath Distortion Rate Measurement System Using a Fading Emulator Based on Two-Stage Method

2016-04-05
2016-01-0082
The suitability of FM radio receivers for automobiles has conventionally been rated by evaluating reception characteristics for broadcast waves in repeated driving tests in specific test environments. The evaluation of sound quality has relied on the auditory judgment due to difficulties to conduct quantitative evaluations by experiments. Thus the method had issues in terms of the reproducibility and objectivity of the evaluations. To address these issues, a two-stage method generating a virtual radio wave environment on a PC was developed. The research further defined the multipath distortion rate, MDr, as an index for the sound quality evaluation of FM receivers, and the findings concerning the suitability of the evaluation of FM terminals for automobiles were reported at the 2015 SAE World Congress.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Journal Article

New Three-dimensional Piston Secondary Motion Analysis Method Coupling Structure Analysis and Multi Body Dynamics Analysis

2011-11-08
2011-32-0559
A new piston secondary motion analysis has been developed that accurately predicts piston strength and the slap noise that occurs when the engine is running. For this secondary motion analysis, flexible bodies are used for the models of the piston, cylinder and cylinder head. This makes it possible to quantify the deformations and secondary motion occurring in each area of the engine. The method is a coupled analysis of the structure analysis and the multi body dynamics analysis. The accuracy of the results obtained in the new analysis method was verified by comparing them to measurement data of piston skirt stress and piston secondary motion taken during firing. To measure piston skirt stress, a newly developed battery-powered telemetric measurement system was used. The calculation results were close to the measurement results both for stress and for secondary motion from low to high engine speed.
Journal Article

Development of Compact Transverse Flux Motor with 2 Coils and 3 Stators

2012-04-16
2012-01-0344
Honda has been conducting research to create a T.F. (Transverse Flux) motor with a new three-dimensional magnetic circuit in order to produce more versatile motors for HEVs. The effectiveness of magnetic circuits has been proven in principle, but there is also a clear need to improve the torque characteristics. To improve torque characteristics, the magnetic saturation needs to be reduced by creating a more even flux path area and widening the gap between the teeth. Torque characteristics were improved by designing a new stator with sufficient flux path area and distance between teeth. The new T.F. motor also has a simple structure, consisting of two winding wires and three stators. This has improved torque density.
Technical Paper

Development of Electrostatic Capacity Type Steering Sensor Using Conductive Leather

2020-04-14
2020-01-1209
Today’s progress in electronic technologies is advancing the process of making vehicles more intelligent, and this is making driving safer and more comfortable. In recent years, numerous vehicles equipped with high-level Advance Driving Assist System (ADAS) have been put on the market. High-level ADAS can detect impending lane deviation, and control the vehicle so that the driver does not deviate from the lane. Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers.
X