Refine Your Search

Topic

Search Results

Journal Article

A Balanced Approach for Securing the OBD-II Port

2017-03-28
2017-01-1662
The On-Board Diagnostics II (OBD-II) port began as a means of extracting diagnostic information and supporting the right to repair. Self-driving vehicles and cellular dongles plugged into the OBD-II port were not anticipated. Researchers have shown that the cellular modem on an OBD-II dongle may be hacked, allowing the attacker to tamper with the vehicle brakes. ADAS, self-driving features and other vehicle functions may be vulnerable as well. The industry must balance the interests of multiple stakeholders including Original Equipment Manufacturers (OEMs) who are required to provide OBD function, repair shops which have a legitimate need to access the OBD functions, dongle providers and drivers. OEMs need the ability to protect drivers and manage liability by limiting how a device or software application may modify the operation of a vehicle.
Journal Article

Incorporation of Atmospheric Neutron Single Event Effects Analysis into a System Safety Assessment

2011-10-18
2011-01-2497
Atmospheric Neutron Single Event Effects (SEE) are widely known to cause failures in all electronic hardware, and cause proportionately more failures in avionics equipment due to the use altitude. In digital systems it is easy to show how SEE can contribute several orders of magnitude more faults than random (hard) failures. Unfortunately, current avionics Safety assessment methods do not require consideration of faults from SEE. AVSI SEE Task Group (Aerospace Vehicle Systems Institute Committee #72, on Mitigating Radiation Effects in Avionics) is currently coordinating development of an atmospheric Neutron Single Event Effects (SEE) Analysis method. This analysis method is a work in progress, in close collaboration with SAE S-18 and WG-63 Committees (Airplane Safety Assessment Committee). The intent is to include this method as part of current revisions to ARP4761 (Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment).
Journal Article

Incorporating Atmospheric Radiation Effects Analysis into the System Design Process

2012-10-22
2012-01-2131
Natural atmospheric radiation effects have been recognized in recent years as key safety and reliability concerns for avionics systems. Atmospheric radiation may cause Single Event Effects (SEE) in electronics. The resulting Single Event Effects can cause various fault conditions, including hazardous misleading information and system effects in avionics equipment. As technology trends continue to achieve higher densities and lower voltages, semiconductor devices are becoming more susceptible to atmospheric radiation effects. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered. The purpose of this paper is to describe a process to incorporate the SEE analysis into the development like-cycle. Background on the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions is provided.
Technical Paper

Optimizing and Integrating Thermal Control Systems for Space Life Sciences Hardware

1997-07-01
972543
Through the development of 35 spaceflight payloads during the last ten years, BioServe Space Technologies has gained valuable practical experience in developing thermal control systems for the microgravity environment. Design constraints imposed by NASA, such as limited power availability, limited material selections, and limited acoustic emissions, coupled with the design constraints imposed by the functional requirements of each payload, impact spaceflight designs in a manner that requires a high degree of optimization. BioServe payloads typically employ thermoelectric coolers (TEC's), air and liquid heat exchangers, a variety of insulation materials, several types of fans and blowers, and various control strategies in order to achieve the desired thermal environment. In the present work methods of selecting thermal system components are discussed.
Technical Paper

Modeling and Analysis of a Phasor-Controlled ME/APU S/G in Motoring Mode

2008-11-11
2008-01-2857
This work deals with the modeling and analysis of a phasor-controlled Starter/Generator (S/G) electrical machine during starting either an aircraft Main Engine (ME) or Auxiliary Power Unit (APU). The model can be used to determine how much stator and exciter current is required to be supplied by a controlled power converter to the S/G to meet the start torque profile. In addition to modeling details and simulation results the paper presents a thorough analysis of the S/G machine, its environment and control.
Technical Paper

Modeling and Analysis of Bus Voltage Control in Aerospace Applications

2008-11-11
2008-01-2868
This work deals with the modeling and analysis of both AC and DC bus voltage control in aerospace applications. The results of the analysis are presented along with system models, including a voltage-controlled current source (vccs) used as a DC Bus controller, a d,q-controlled, IGBT-based, SVPWM-switched, ac-to-dc active converter/rectifier (AR) used as a DC Bus controller, a 3-phase ac generator voltage regulator (VR) used as an AC Bus controller, a 3-phase uncontrolled ac generator followed by an SCR-controlled ac-to-dc converter, used as a DC Bus controller (single-controlled bus), and a 3-phase dynamically-controlled ac generator followed by an SCR-controlled ac-to-dc converter, used to provide both AC and DC Bus control (dual-controlled bus).
Technical Paper

Advanced Electric Generators for Aerospace More Electric Architectures

2010-11-02
2010-01-1758
This paper discusses the problem of designing electric machines (EM) for advanced electric generators (AEG) used in aerospace more electric architecture (MEA) that would be applicable to aircraft, spacecraft, and military ground vehicles. The AEG's are analyzed using aspects of Six Sigma theory that relate to critical-to-quality (CTQ) subjects. Using this approach, weight, volume, reliability, efficiency, and cost (CTQs) are addressed to develop a balance among them, resulting in an optimized power generation system. The influence of the machine power conditioners and system considerations are also discussed. As a part of the machine evaluation process, speeds, bearings, complexities, rotor mechanical and thermal limitations, torque pulsations, currents, and power densities are also considered. A methodology for electric machine selection is demonstrated. Examples of high-speed, high-performance machine applications are shown.
Technical Paper

Nitrogen Removal from a Urine-Soap Wastewater Using a Bioprocessor System: Process Monitoring and Control

2002-07-15
2002-01-2353
A detailed study was conducted on nitrification using a bench top bioprocessor system proposed for water recycling of a urine-soap wastewater expected to be generated by crewmembers on International Space Station (ISS) or similar long-term space missions. The bioprocessor system consisted of two packed bed biofilm reactors; one anoxic reactor used for denitrification and one aerobic reactor used for nitrification. lnfluent wastewater was a mixture of dilute NASA whole body soap (2,300 mg/L) and urea (500 mg/L as organic nitrogen). During two months of steady-state operation, average chemical oxygen demand (COD) removal was greater than 95%, and average total nitrogen removal was 70%. We observed that high levels of nitrite consistently accumulated in the aerobic (nitrifying) reactor effluent, indicating incomplete nitrification as the typical end product of the reaction would be nitrate.
Technical Paper

Designing Fluid Handling Systems for Space Life Science Experimentation

2002-07-15
2002-01-2281
The increased demand in the area of space life sciences necessitates the need for more experimentation hardware with increased capabilities. Due to the high cost of hardware development for space based research, new hardware should be modular in design and suited to handle a variety of different experiments. The fluid handling systems found in experimentation hardware will often share many of the same requirements for different experiments. A design process that can be used for biological fluid handling systems that cover a wide range of experimentation requirements is proposed. Important parameters to be considered when making a trade study for selection of system components will be discussed. This paper will address topics of current research in space life sciences and describe state of the art hardware that is available or under development for use.
Technical Paper

Designing User-Interfaces for the Cockpit: Five Common Design Errors and How to Avoid Them

2002-11-05
2002-01-2968
The efficiency and robustness of pilot-automation interaction is a function of the volume of memorized action sequences required to use the automation to perform mission tasks. This paper describes a model of pilot cognition for the evaluation of the cognitive usability of cockpit automation. Five common cockpit automation design errors are discussed with examples.
Technical Paper

Reliable Bearing Wear Detection System for On-Condition Maintenance of Electric Generators

2002-11-05
2002-01-2951
Demand on the reliability of Electric Generators for Aerospace applications is assuming more importance everyday with the advent of “Fly-by-Wire” and “More-Electric-Aircraft” concepts. With today's high-powered avionics and sophisticated control systems, airline operators expect better performance and would no longer accept weak links in the system that need frequent maintenance. One of the weakest points in an electric generator is its reliance on rolling element bearings, which are subject to unpredictable and frequent failures. Huge redundancy and frequent maintenance ensure uninterrupted supply of electricity in an aircraft.
Technical Paper

Development and Application of a Real Time Bleed Air Contamination Monitor

2002-11-05
2002-01-2925
The bleed air contamination monitor was developed at Honeywell to ensure that our products provide the highest quality bleed air to aircraft environmental control systems. The bleed air contamination monitor is currently for ground based applications only. It is being developed into an on board system for future applications. Current Aircraft Cabin Air Quality measurement techniques are very labor intensive and require days or even weeks of laboratory analysis to provide results. This is unacceptable from a manufacturing and service perspective. Development of a real time analyzer began in the early 1990s and has progressed to a point where a product is ready for introduction that not only provides real time information regarding engine air contamination, but is also easy for operators to use with a minimum amount of training.
Technical Paper

Dynamic Features and their Propagation in a Centrifugal Compressor Housing with Ported Shroud

2012-04-16
2012-01-0706
The goal of the presented research is to study the effective operational range for a centrifugal vaneless diffuser turbocharger compressor with ported shroud typically used in diesel engines. A turbocharger bench facility was designed and tested in order to define the performances of the compressor and to better understand the occurrence of instabilities in the housing. Specific emphasis was given to the low mass flow rate region of the compressor performance characteristics where instabilities occur with fluctuations that can be significantly large in the case of surge. Static pressures and dynamic pressure fluctuations were measured at the inlet, the outlet, as well as at different positions around the volute and diffuser sections of the compressor in order to assess the development and propagation of flow instabilities. The dynamic signature of the flow was measured along with the elaboration of the compressor mapping.
Technical Paper

OS and Platform Independent Tool Qualification in Safety Critical Systems

2022-05-26
2022-26-0018
It’s a common practice to use different kinds tools to aid in the development and verification of modern safety critical avionics systems. These tools play a key role in avionics engineering and used in all project phases: requirements development, software design, source code development, integration, configuration management, and verification. Tools assist to analyze and improve system safety by automation of some of the activities which if performed manually and are therefore prone to human error. However, incorrect functioning of a tool can have negative impact on the safety and performance of the Safety Critical system. Hence, tools are proposed to be qualified whenever any of the design assurance process(es) described in RTCA/DO-178C or RTCA/DO-254 are eliminated, reduced, or automated using the tool unless the output of the tool is verified manually. Qualification of the tool gives confidence in the tool functionality.
Technical Paper

Integrated Modular Concepts for Improved ECLSS Command and Data Handling

2006-07-17
2006-01-2122
Current Environmental Control and Life Support Systems (ECLSS), particularly on large systems, have a tendency to include several heterogeneous processing elements. This approach is also the default in the commercial aircraft industry. However, Honeywell has been extremely successful in the past decade in using an integrated modular approach to command and data handling for aircraft avionics. This approach, dubbed “Fifth Generation Avionics” by the Air Force's Wright Laboratory, has resulted in significant reductions in the size, weight, power, and acquisition costs of the data handling subsystem. Logistics, modification, and upgrade costs also decreased considerably. While commonality is maximized in the integrated modular architecture, each application continues to be independent with internal designs completely under the control of the application developer.
Technical Paper

Heat Exchanger Fouling Detection in Aircraft Environmental Control Systems

2012-10-22
2012-01-2107
The operating environment of aircraft causes accumulation and build-up of contamination on both the narrowest passages of the ECS (Environmental Control System) i.e: the heat exchangers. Accumulated contamination may lead to reduction of performance over time, and in some case to failures causing AOG (Aircraft on Ground), customer dissatisfaction and elevated repair costs. Airframers/airlines eschew fixed maintenance cleaning intervals because of the high cost of removing and cleaning these devices preferring instead to rely on on-condition maintenance. In addition, on-wing cleaning is t impractical because of installation constrains. Hence, it is desirable to have a contamination monitoring that could alert the maintenance crew in advance to prepare and minimize disruption when contamination levels exceed acceptable thresholds. Two methods are proposed to achieve this task, The effectiveness of these methods are demonstrated using analytical and computational tools.
Technical Paper

Stress-Accelerated Photodegradation of Space-Rated Flexible Transparent Films Exposed to Mars Surface UV

2005-07-11
2005-01-2775
Thin films continue to play an ever-increasing role in high performance structures for space exploration. Membrane structures have been developed or envisioned for such applications as scientific balloons, deep space antennas, Earth radiometers, radars, concentrators, telescopes, sun shields, solar sails, solar arrays, spacecraft booms, and planetary surface habitats. Inflatable membrane structures can have very high packaging efficiencies, are easy to construct at remote locations and are lightweight because pressure differences provide structural stabilization without the need for rigid supports or internal framework. Recent proposals have suggested construction of an inflatable greenhouse from transparent polymer films for Mars surface operations. This paper reports on the progress to examine the effects of mechanical loading on the rates of photodegradation in transparent polymer films exposed to simulated Mars ultraviolet radiation.
Technical Paper

Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

2007-09-17
2007-01-3859
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA)- Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
Technical Paper

Performance Evaluation of a Three-Stage Vacuum Rotary Distillation Processor

2000-07-10
2000-01-2386
Simulated spacecraft water recovery wastewater feed streams were purified with a three-stage vacuum rotary distillation processor (TVRD) during a series of tests conducted to evaluate the operation of this technology. The TVRD was developed to efficiently reclaim potable water from urine in microgravity by NIICHIMMASH (Moscow, Russia). A prototype was evaluated at the Honeywell Space Water Reclamation test lab, where a special test setup was assembled to evaluate the performance of the TVRD. This paper discusses the TVRD technology, test description, test results, and performance analysis. Tests were conducted using four streams of wastewater: pretreated human urine, bioprocessor effluent, reverse osmosis brine ersatz, and deionized water. The testing demonstrated that greater than 90 percent water recovery can be reached with production rates of 2.2 to 2.9 kg/hr (4.84 to 6.30 lb/hr).
Technical Paper

Inerting Aircraft Fuel Tanks - Reducing the Hazard

2000-07-10
2000-01-2267
Aircraft accidents caused by explosion of the vapor within the fuel tanks have been the subject of many recent articles. Methods of either suppressing the combustion or preventing the ignition have been considered. Indeed, solutions such as liquid nitrogen, halon, and reticulated foam have been installed on production aircraft. However, these have proved to be expensive to operate or are being phased out. By working together, the authors have developed the capability to provide fully integrated On-Board Inert Gas Generating Systems (OBIGGS) based on novel hollow fiber membrane technology. An overview of the advantages of such an approach is presented together with an outline of the system design method. The importance of considering the effect of differing flight profiles, and the inter-reactions of the OBIGGS, with the Fuel System, Engine Bleed Air Management, and Environmental Control Systems in the design process are emphasized.
X