Refine Your Search

Topic

Author

Search Results

Journal Article

Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2008/2009

2009-07-12
2009-01-2445
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2006/2007

2007-07-09
2007-01-3254
The design of a vacuum-swing adsorption process to remove metabolic water, metabolic carbon dioxide, and metabolic and equipment generated trace contaminant gases from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. For Orion, the approach is taken that all metabolic water must be removed by the Sorbent-Based Atmosphere Revitalization System (SBAR), a technology approach that has not been used in previous spacecraft life support systems. Design and development of a prototype SBAR, a facility test stand, and subsequent testing of the SBAR in late 2006 and early 2007 is discussed.
Technical Paper

Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

1997-07-01
972331
The paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station(ISS).Current activities computer model development, component design and development, subsystem/integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: International Space Station Recipient Mode Test Results and Lessons Learned

1997-07-01
972375
A test has been completed at NASA's Marshall Space Flight Center (MSFC) to evaluate the Water Recovery and Management (WRM) system and Waste Management (WM) urinal design for the United States On-Orbit Segment (USOS) of the International Space Station (ISS). Potable and urine reclamation processors were integrated with waste water generation equipment and successfully operated for a total of 128 days in recipient mode configuration to evaluate the accumulation of contaminants in the water system and to assess the performance of various modifications to the WRM and WM hardware. No accumulation of contaminants were detected in the product water over the course of the recipient mode test. An additional 18 days were conducted in donor mode to assess the ability of the system to removal viral contaminants, to monitor the breakthrough of organic contaminants through the multifiltration bed, and for resolving anomalies that occurred during the test.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2007/2008

2008-06-29
2008-01-2082
The design of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. The approach for Orion is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of the Sorbent Based Atmosphere Regeneration (SBAR) system, including test articles, a facility test stand, and full-scale testing in late 2007 and early 2008 is discussed.
Technical Paper

Life Support Requirements and Technology Challenges for NASA's Constellation Program

2008-06-29
2008-01-2018
NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for extended durations at the lunar outpost with limited resource resupply capability will require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration Extra-vehicular Activity's (EVA's) will be particularly challenging.
Technical Paper

Cascade Distillation Subsystem Development Testing

2008-01-29
2008-01-2195
Recovery of potable water from wastewater is essential for the success of long-term manned missions to the moon and Mars. Honeywell International and the team consisting of Thermodistillation Company (Kyiv, Ukraine) and NASA Johnson Space Center (JSC) Crew and Thermal Systems Division are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The Wastewater Processing Cascade Distillation Subsystem (CDS) utilizes an innovative and efficient multi-stage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage prototype of the subsystem was built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for development testing.
Technical Paper

Human-rating Automated and Robotic Systems — How HAL Can Work Safely with Astronauts

2009-07-12
2009-01-2527
Long duration human space missions, as planned in the Vision for Space Exploration, will not be possible without applying unprecedented levels of automation to support the human endeavors. The automated and robotic systems must carry the load of routine “housekeeping” for the new generation of explorers, as well as assist their exploration science and engineering work with new precision. Fortunately, the state of automated and robotic systems is sophisticated and sturdy enough to do this work — but the systems themselves have never been human-rated as all other NASA physical systems used in human space flight have. Our intent in this paper is to provide perspective on requirements and architecture for the interfaces and interactions between human beings and the astonishing array of automated systems; and the approach we believe necessary to create human-rated systems and implement them in the space program.
Technical Paper

Human Factors Flight Test Evaluation of an Airport Surface Display with Indications & Alerts (SURF IA)

2010-09-30
2010-01-1663
This paper presents the results of a human factors flight test evaluation of a display of Enhanced Traffic Situational Awareness on the Airport Surface with Indications and Alerts (SURF IA). The study is an element of the FAA-sponsored Surface Conflict Detection and Alerting with Consideration of Arrival Applications program. The objective of the flight test was to conduct a comparative evaluation of two candidate SURF IA displays: a detailed Airport Surface Situation Awareness (ASSA) display and a runways-only Final Approach Runway Occupancy Awareness (FAROA) display. Six pilots with a current Air Transport Pilot Certificate each completed 18 scenarios. A Beechcraft King Air C-90 and a Cessna Citation Sovereign aircraft were deployed for the flight tests. The scenarios were conducted at Seattle-Tacoma International Airport and at Snohomish County Paine Field Airport, with each aircraft acting as ‘traffic’ for the other aircraft.
Technical Paper

Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

2003-07-07
2003-01-2538
An austere fiscal environment in the aerospace community creates pressure to reduce program costs, often minimizing or even deleting human interface requirements from the design process. With the assumption that the flight crew can recover, in real time, from a poorly human factored space vehicle design, the classical crew interface requirements have either been not included in the design or not properly funded, even though they are carried as requirements. Cost cuts have also affected the quality of retained human factors engineering personnel. Planning is ongoing to correct these issues. Herein are techniques for ensuring that human interface requirements are integrated with flight design from proposal through verification and launch activation.
Technical Paper

Development of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2001-07-09
2001-01-2332
The International Space Station (ISS) internal thermal control system (ITCS) has been developed jointly by the Boeing Corporation, Huntsville, Alabama, and Honeywell Engines & Systems, Torrance, California, to meet ISS internal thermal control needs. The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first module, the US Laboratory Module, was launched in February 2001 and is now operational on the ISS. The dual loop system is comprised of a low-temperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a three-way mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, a pump bypass assembly (PBA), and a heat exchanger.
Technical Paper

Status of the International Space Station Nodes 2/3 Environmental Control and Life Support System

2002-07-15
2002-01-2490
The International Space Station (ISS) modules Nodes 2 and 3 are progressing through the design phase into integration, test, and verification. This paper gives a status of the Nodes 2 and 3 Environmental Control and Life Support System (ECLSS) design progress since 1999 (ICES paper 1999-01-2146). The Node 2 Design Review 2 was completed in March 2001. Node 2 is currently in the hardware integration/test phase at Alenia Spazio. The ECLSS for Node 2 includes inter- and intramodule ventilation, temperature and humidity control, distribution of atmosphere samples, low pressure and recharge oxygen and nitrogen, fuel cell and wastewater, and fire detection and suppression. Changes/challenges since 1999 have included the addition of a low temperature loop coolant bypass around the Common Cabin Air Assembly condensing heat exchanger and resolution of common hardware and verification issues. The current status of hardware integration and testing is also discussed.
Technical Paper

Innovations in Laser Welding of Thermoplastics: This Advanced Technology is Ready to be Commercialized

2002-07-09
2002-01-2011
Previously we reported to the SAE 2000 basics in selection of various colored and un-colored/natural nylon 6 (polyamide - PA 6) based plastics for laser welding technology. Later we presented to Antec1 2001 and to SAE 2002 our developments of colored in black through-transmissible grades of PA 6 plastics, which were specially tailored for the specifics of the design and laser welding technology. In this current paper, we will try to enhance the understanding of the engineering community regarding the usefulness and applicability of laser welding technology, developed colored thermoplastics, and its increasing use in various automotive and transportation applications.
Technical Paper

Smart Structure and Integrated System: Reinforced Nylon and Aluminum Self-Tapping Screws

2002-07-09
2002-01-2030
Previously we reported to SAE 2002 the basic principles in materials selections for the fastening of plastics. In this current paper, we will try to increase the understanding of the automotive community regarding the usefulness and applicability of aluminum made self-tapping screws in the fastening of various thermoplastic components. Utilization of the light alloys for the manufacturing of fasteners for plastic applications allowed us to manage efficiently the stiffness considerations, short- and long-term performance of the assembled plastic components. The results presented in this study will help designers, technologists, thermoplastic and fastener developers and fastener manufacturers, to optimize mechanical performance of assembled automotive components, where self-tapping screws will be used.
Technical Paper

Development of a Direct Drive Hall Effect Thruster System

2002-10-29
2002-01-3212
A three-year program to develop a Direct Drive Hall Effect Thruster (D2HET) system began 15 months ago as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems. The D2HET will employ solar arrays that operate at voltages greater than 300V, and will be an enabling technology for affordable planetary exploration. It will also be a stepping-stone in the production of the next generation of power systems for Earth orbiting satellites. This paper provides a general overview of the program and reports the first year's findings from both theoretical and experimental components of the program.
Technical Paper

Innovations in Laser Welding Technology: State of the Art in Joining of Thermoplastics and Advances with Colored Nylon for Automotive Applications

2002-03-04
2002-01-0716
Previously we reported to the SAE'99 our findings on selections of nylon (polyamide) based plastics for laser welding (LW) technology. In this current paper, we will try to increase the understanding of the engineering community regarding the usefulness and applicability of an advanced LW technology (and developed thermoplastics), and its increasing use in various automotive applications.
Technical Paper

Reinforcement Challenges and Solutions in Optimized Design of Injection Molded Plastic Parts

2003-03-03
2003-01-1123
The mechanical performance of injection molded glass-fiber reinforced plastic parts is highly anisotropic and depends strongly on the kinetics (orientation and distribution) of the glass-fiber and the part geometry. Similarly, the bulk and local mechanical performance at the ribs, walls and welds is influenced by these glass-fibers and the specific processing technology (including joining) used, as related to melt-flow and melt-pool formation and glass-fiber re-orientation. The purpose of this study is to show: the effect of short glass-fiber orientation at the pre-welded beads, ribs and wall areas for injection molded and subsequently welded parts the short-term mechanical performance of welded butt-joints that have various geometry and thickness, namely “straight” and “T-type” welds.
X