Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Improvement and Validation of Hybrid III Dummy Knee Finite Element Model

2015-04-14
2015-01-0449
The public Hybrid III family finite element models have been used in simulation of automotive safety research widely. The validity of an ATD finite element model is largely dependent on the accuracy of model structure and accurate material property parameters especially for the soft material. For Hybrid III 50th percentile male dummy model, the femur load is a vital parameter for evaluating the injury risks of lower limbs, so the importance of accuracy of knee subcomponent model is obvious. The objective of this work was to evaluate the accuracy of knee subcomponent model and improve the validity of it. Comparisons between knee physical model and knee finite element model were conducted for both structure and property of material. The inaccuracy of structure and the material model of the published model were observed.
Technical Paper

Identification of Low-Frequency/Low SNR Automobile Noise Sources

2021-08-31
2021-01-1062
This paper presents experimental investigations of determining and analyzing low-frequency, low-SNR (Signal to Noise Ratio) noise sources of an automobile by using a new technology known as Sound Viewer. Such a task is typically very difficult to do especially at low or even negative SNR. The underlying principles behind the Sound Viewer technology consists of a passive SODAR (Sonic Detection And Ranging) and HELS (Helmholtz Equation Least Squares) method. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, etc.
Technical Paper

Analyses of Low-Frequency Motorcycle Noise Under Both Steady-State and Transient Operating Conditions

2021-08-31
2021-01-1108
This paper presents experimental investigations of diagnosing and analyzing the low-frequency, low- SNR (Signal to Noise Ratio) noise sources of three motorcycles using a hybrid technology that consists of a passive SODAR (Sonic Detection And Ranging) and modified HELS (Helmholtz Equation Least Squares) methods. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range that is consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, and sound transmission paths through arbitrarily shaped vibrating structures.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

Toward High Automatic Driving by a Dynamic Optimal Trajectory Planning Method Based on High-Order Polynomials

2020-04-14
2020-01-0106
This paper intends to present a novel optimal trajectory planning method for obstacle avoidance on highways. Firstly, a mapping from the road Cartesian coordinate system to the road Frenet-based coordinate system is built, and the path lateral offset in the road Frenet-based coordinate system is represented by a function of quintic polynomial respecting the traveled distance along the road centerline. With different terminal conditions regarding its position, heading and curvature of the endpoint, and together with initial conditions of the starting point, the path planner generates a bunch of candidate paths via solving nonlinear equation sets numerically. A path selecting mechanism is further built which considers a normalized weighted sum of the path length, curvature, consistency with the previous path, as well as the road hazard risk.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Journal Article

HIC(d) and Its Relation With Headform Rotational Acceleration in Vehicle Upper Interior Head Impact Safety Assessment

2008-04-14
2008-01-0186
Upper interior head impact safety is an important consideration in vehicle design and is covered under FMVSS 201. This standard generally requires that HIC(d) should not exceed 1000 when a legitimate target in the upper interior of a vehicle is impacted with a featureless Hybrid III headform at a velocity of 15 mph (6.7 m/s). As HIC and therefore HIC(d) is based on translational deceleration experienced at the CG of a test headform, its applicability is often doubted in protection against injury that can be caused due to rotational acceleration of head during impact. A study is carried out here using an improved lumped parameter model (LPM) representing headform impact for cases in which moderate to significant headform rotation may be present primarily due to the geometric configuration of targets.
Journal Article

Jaw Loading Response of Current ATDs

2009-04-20
2009-01-0388
Biomechanical surrogates are used in various forms to study head impact response in automotive applications and for assessing helmet performance. Surrogate headforms include those from the National Operating Committee on Standards for Athletic Equipment (NOCSAE) and the many variants of the Hybrid III. However, the response of these surrogates to loading at the chin and how that response may affect the loads transferred from the jaw to the rest of the head are unknown. To address part of that question, the current study compares the chin impact response performance of select human surrogates to that of the cadaver. A selection of Hybrid III and NOCSAE based surrogates with fixed and articulating jaws were tested under drop mass impact conditions that were used to describe post mortem human subject (PMHS) response to impacts at the chin (Craig et al., 2008). Results were compared to the PMHS response with cumulative variance technique (Rhule et al., 2002).
Journal Article

Field Relevance of the New Car Assessment Program Lane Departure Warning Confirmation Test

2012-04-16
2012-01-0284
The availability of active safety systems, such as Lane Departure Warning (LDW), has recently been added as a rating factor in the U.S. New Car Assessment Program (NCAP). The objective of this study is to determine the relevance of the NCAP LDW confirmation test to real-world road departure crashes. This study is based on data collected as part of supplemental crash reconstructions performed on 890 road departure collisions from the National Automotive Sampling System, Crashworthiness Data System (NASS/CDS). Scene diagrams and photographs were examined to determine the lane departure and lane marking characteristics not available in the original data. The results suggest that the LDW confirmation test captures many of the conditions observed in real-world road departures. For example, 40% of all single vehicle collisions in the dataset involved a drift-out-of-lane type of departures represented by the test.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
Journal Article

Biomechanical Response of the Human Face and Corresponding Biofidelity of the FOCUS Headform

2010-04-12
2010-01-1317
In order to evaluate a human surrogate, the human and surrogate response must be defined. The purpose of this study was to evaluate the response of cadaver subjects to blunt impacts to the frontal bone, nasal bone and maxilla. Force-displacement corridors were developed based on the impact response of each region. Variation in the force-displacement response of the cadaver subjects due to the occurrence of fracture and fracture severity was demonstrated. Additionally, impacts were performed at matched locations using the Facial and Ocular CountermeasUre Safety (FOCUS) headform. The FOCUS headform is capable of measuring forces imposed onto facial structures using internal load cells. Based on the tests performed in this study, the nasal region of the FOCUS headform was found to be the most sensitive to impact location. Due to a wide range in geometrical characteristics, the nasal impact response varied significantly, resulting in wide corridors for human response.
Journal Article

Practical Versus RSM-Based MDO in Vehicle Body Design

2012-04-16
2012-01-0098
Multidisciplinary Design Optimization (MDO) is of great significance in the lean design of vehicles. The present work is concerned with the objective of cross-functional optimization (i.e. MDO) of automotive body. For simplicity, the main goal adopted here is minimizing the weight of the body meeting NVH and crash safety targets. The stated goal can be achieved following either of two different ways: classic response surface method (RSM) and practical MDO methodology espoused recently. Even though RSM seems to be able to find a design point which satisfies the constraints, the problem is with the time associated with running such CAE algorithms that can provide a single optimal solution for multi-disciplinary areas such as NVH and crash safety.
Journal Article

Validation of Event Data Recorders in Side-Impact Crash Tests

2014-04-01
2014-01-0503
This study evaluated the accuracy of 75 Event Data Recorders (EDRs) extracted from model year 2010-2012 Chrysler, Ford, General Motors, Honda, Mazda, and Toyota vehicles subjected to side-impact moving deformable barrier crash tests. The test report and vehicle-mounted accelerometers provided reference values to assess the EDR reported change in lateral velocity (delta-v), seatbelt buckle status, and airbag deployment status. Our results show that EDRs underreported the reference lateral delta-v in the vast majority of cases, mimicking the errors and conclusions found in some longitudinal EDR accuracy studies. For maximum lateral delta-v, the average arithmetic error was −3.59 kph (−13.8%) and the average absolute error was 4.05 kph (15.9%). All EDR reports that recorded a seatbelt buckle status data element correctly recorded the buckle status at both the driver and right front passenger locations.
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Multi-Objective Discrete Robust Optimization for Pedestrian Head Protection

2020-04-14
2020-01-0934
Optimization design for vehicle front-end structures has proven rather essential and been extensively used to improve the vehicle performance. Nevertheless, the front-end structure needs to meet the requirement of both pedestrian safety and structural stiffness which are somewhat contradicting to each other. Furthermore, an optimal design could become less meaningful or even unacceptable when some uncertainties present. In the paper, a multi-objective discrete robust optimization (MODRO) algorithm is used to minimize the injury of head and maximize the structural stiffness involving uncertainties. MODRO algorithm is achieved by coupling grey relational analysis (GRA) and principal component analysis (PCA) with Taguchi method. The optimized result shows that the MODRO algorithm improved performance of pedestrian head injury and robustness of the vehicle front-end structure.
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Technical Paper

Study on the Step by Step Energy Absorption Method Based on the Theory of Reverse Design

2007-08-05
2007-01-3685
As the length of the frontal structure of the minibus can't be as long as cars, some new methods have to be developed to maximum the effect of the energy absorption. In this paper, a step-by-step energy absorption method which based on reverse design was proposed. Two plates with different size and different thickness which can take part in the energy absorption step by step were added in each of the rectangular longitudinal beams. Finite element models were developed both for rectangular beam and minibus. Multi-body model was also developed for the restraint system. The validation of the rectangular beam model was done by sled test, and the minibus model was done by minibus crash test. The computational results matched well with the test results. Then, orthogonal experimental method was used to find the most effective parameters for the energy absorption. These parameters were optimized in the simulation of minibus crash.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
X