Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of Hardware-in-the-Loop Simulator and Vehicle Dynamic Model for Testing ABS

2003-03-03
2003-01-0858
In-vehicle driving tests for evaluating performance of vehicle control devices are often time-consuming, expensive, and not reproducible. Using hardware-in-the-loop simulation scheme, actual control devices can be easily tested in real time in a closed loop with a virtual vehicle. This advantage has made HILS systems popular as testbench lately in automotive industries. This paper describes a PC-based HILS system for ABS that has been developed in Matlab environment with real-time rapid prototyping tools. Also presented in this paper is a semi-empirical vehicle dynamic model that has been designed to account for kinematic and compliant characteristics of the suspension system from rig tests.
Technical Paper

A Study of the Influence of Pad Properties and Disc Coning on High Speed Judder

2012-09-17
2012-01-1815
The effects of pad properties and thermal coning of discs on high speed judder were investigated using dynamometer and vehicle tests. The friction materials of different thermal conductivities were manufactured and the discs were design-modified to control the thermal coning during braking under high speed conditions. Brake Torque Variation(BTV) was measured to evaluate the judder propensity in the dynamometer tests and the vibration on steering wheel and brake pedal was measured in the vehicle tests. The results showed that the increase of thermal conductivity of pad could not affect the judder propensity during high speed braking below 350°C of disc temperature, however better disc design reduced judder propensity due to the lower thermal deformation. Moreover, the increase of pad compressibility can reduce judder propensity due to the increase of damping capacity.
Journal Article

Analysis of the Effect of the Wedged Type Brake Caliper Piston on Brake Drag

2021-10-11
2021-01-1293
Recently, there’s a massive flow of change in the automotive industry with the coming era of electric vehicles and self-driving (autonomous) vehicles. The automotive braking system field is not an exception for the change and there are not only lots of new systems being developed but also demands for researches for optimizations of conventional brake systems fitting to the newly appeared systems such as E-Booster and Electric Motor Brake (EMB) Caliper. Taking the Electric Motor Brake Caliper for example, it is considered as a very important and useful system for autonomous vehicles because the motor actuator of the caliper is much easier to control with ECUs compared to the conventional hydraulic pressure system. However, easy of control is not the only thing that excites brake system engineers.
Technical Paper

Application of Motor Load Emulation Techniques for EPB (Electric Parking Brake) System Tests

2024-04-09
2024-01-2274
The EPB (Electric Parking Brake) system is divided into two parts based on VDA305-100 recommendation (German Association of the Automotive Industry, VDA). One part of the EPB system contains the parking brake actuator, caliper, and actuation logic (parking brake controller, PBC). The second part of the EPB system is called to the HOST which contains the EPB power electronics, necessary peripherals and controls the functions that the driver can experience. According to VDA305-100, the PBC is responsible for recognition of a fault in the parking brake actuator based on the measured values transmitted from the HOST such as EPB motor voltage and current. Due to mechanical fault injection limitations, failsafe tests require physically electrical emulation caused by parking brake actuator faults to verify the parking brake actuator fault detection and management algorithm.
X