Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Engine Sound Reduction and Enhancement Using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

The Optimization of Open COWL Structure to Give Free Shape to the Design of a Pillar Outer Panel Front

2009-04-20
2009-01-1231
At present, the assembling order of COWL is decided according to the design of the Vehicle’s A pillar outer. Therefore when the factory layout changes, extensive costs are needed according to the changes of the A pillar outer design. Thus, this study was carried out to develop a new COWL structure that is able to determine the layout of the factory without changing the design of the A pillar outer. In addition, by adjusting the DFSS tool to COWL, the direction of the material and thickness of COWL was studied to optimize the dynamic stiffness of the body structure and pedestrian protection performance. Based on this study, the optimization of the OPEN COWL is presented.
Technical Paper

Transient Control Strategy of Hybrid Electric Vehicle during Mode Change

2009-04-20
2009-01-0228
Transient control for EV/HEV mode change takes an important role in the system of the parallel HEV, which consists of internal combustion engine (ICE), electric motor (EM), integrated starter & generator (ISG), battery, automatic transmission and clutch (that replaces the torque converter), not only ICE/EM control but also clutch engagement control are the key of it. To improve the mode change performance, this study proposes clutch slip control methods. Method 1. focuses on the open loop clutch pressure control so as to adjust target clutch transfer torque. The main idea of Method 2. is to control the clutch pressure in order to achieve the desired speed difference(Method 2-1) from each side of clutch when motor speed is faster than engine idle speed and keep target engine speed(Method 2-2) when motor speed is slower than engine idle speed. This paper defines control sequence which is scheduling the behavior of powertrain components as well.
Technical Paper

Idle Sound Quality Development for Diesel V6 Engine

2011-05-17
2011-01-1563
A comprehensive investigation was carried out in order to develop the idle sound quality for diesel V6 engine when the engine development process is applied to power-train system, which included new 8-speed automatic transmission for breaking down the noise contribution between the mechanical excitation and the combustion excitation. First of all, the improvement of dynamic characteristic can be achieved during the early stages of the engine development process using experimental modal analysis (EMA) & the robust design of each engine functional system. In addition, the engine structural attenuation (SA) is enhanced such that the radiated combustion noise of the engine can be maintained at a target level even with an increased combustion excitation. It was found that the engine system has better parts and worse parts in frequency range throughout the SA analysis. It is important that weak points in the system should be optimized.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion - Part III

2021-04-06
2021-01-0401
The aim of this paper is to computationally investigate the combustion behavior and energy recovery processes of a six-stroke gasoline compression ignition (6S-GCI) engine that employs a continuously variable valve duration (CVVD) technique, under highly diluted, low-temperature combustion (LTC) conditions. The effects of variation of parameters concerning injection spray targeting (number of fuel injector holes. injector nozzle size and spray included angle) and combustion chamber geometry (piston bowl design) are analyzed using an in-house 3D CFD code coupled with high-fidelity physical sub-models with the Chemkin library in conjunction with a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel.
X