Refine Your Search

Topic

Author

Search Results

Journal Article

A Study on North American Customer Preference to Interior Noise using Sound Balance Analysis

2014-04-01
2014-01-0023
A new approach to achieve better customer perception of overall vehicle quietness is the sound balance improvement of vehicle interior sound during driving. Interior sound is classified into 3 primary sound source shares such as engine sound relative to revolution speed, tire road noise and wind noise relative to vehicle speed. Each interior sound shares are classified using the synchronous time-domain averaging method. The sound related to revolution order of engine and auxiliaries is considered as engine sound share, tire road noise and wind noise shares are extracted by multiple coherent output power analysis. Sound balance analysis focuses on improving the relative difference in interior sound share level between the 3 primary sound sources. Virtual sound simulator which is able to represent various driving conditions and able to adjust imaginary sound share is built for several vehicles in same compact segment.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

1998-02-23
980901
In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

Development of an Automatic Climate Control(ACC) Algorithm and the Roof Mounted System for Busses

1998-11-16
982777
Air conditioning is defined as the process of treating air so as to control simultaneously its temperature, humidity, cleanliness and distribution to meet the requirements of the conditioned space. As in the definition, the important actions involved in the operation of an air conditioning system are temperature and humidity control, air purification and movement. For these conditions this paper proposes a Automatic Climate Control(ACC) system of the bus. The system has cooling, heating, and dehumidifying modes, and is governed by dual 8-bit microprocessors. These modes are broken down into sub-modules dealing with control of the compressor, blower speed, damper position, air purifier, ventilators, preheater, air mixing damper and so on.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

2000-06-12
2000-05-0151
A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

The development of in-vehicle unit of advanced vehicle information and communication system

2000-06-12
2000-05-0370
This paper presents an in-vehicle information system, AVICS in development. With AVICS, the driver could get the various information on traffic, news, weather, restaurants, and so on, which the AVICS information center provides via mobile telecommunication network. The driver requests the information to operator in center by voice with hands-free system or by handling the menu offered in the form of web-page. The in-vehicle unit for AVICS is designed to interface with wireless network with a built-in RF MODEM, to control NAVI system, and to display the information on the LCD monitor of AV system. The Internet browser is customized to parse specific HTML tags, application software is realized on 32-bit RISC processor. In this paper, we will overview the concept of AVICS and focus on development of in-vehicle unit of AVICS.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

2001-03-05
2001-01-0102
Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
Technical Paper

Semi-Active Steering Wheel for Steer-By-Wire System

2001-10-01
2001-01-3306
Conventional steering system has a mechanical connection between the driver and the front tires of the vehicle, but in steer-by-wire system, there is no such a connection. Instead, actuators, positioned in the vehicle's front corners receive input from the control module and turn the front wheels accordingly. In steer-by-wire system, steering wheel is an important part that not only transfers driver's steering input to the controller but also provides a road feedback feeling to the driver's hand. Thus the reactive torque actuator, providing road feedback, plays an important role in steer-by-wire system. In conventional steer-by-wire-system, a motor was used as a reactive torque actuator. But using motor has some disadvantages such as an oscillatory feeling, and improper and potentially dangerous acceleration of the steering wheel by the motor when driver's hands are released from steering wheel abruptly.
Technical Paper

The Stability Analysis of Steering and Suspension Parameters on Hands Free Motion

2002-03-04
2002-01-0620
Hands-free stability, one of the handling characteristics of a vehicle, is a stability criterion evaluated in case of a driver's steering wheel release after a certain steering input during driving. During the development process, a hands-free-unstable vehicle needs many steering and suspension parts to be repeatedly tested to improve the performance. In this paper, CAE methods are proposed to investigate easily the influence of the steering and suspension design parameters on the hands-free stability. And the results of CAE methods were compared with the prototype vehicle test to verify the validity of the methods.
Technical Paper

Study on the Long-Term Aging-Resistance of Anti-Vibration Rubber in the Vehicle

2002-03-04
2002-01-0725
Anti-vibration rubbers in vehicle play an important role in restricting vibration generated from engine and road. But, degradation occurs when rubber is exposed for a long time to heat, light, ozone and etc. These make the rubber hard and lose its initial properties. The rubber change makes N.V.H performance of vehicle the worse, and gives the discomfort to the passengers. To reduce the change of rubber properties, sulfur-donor and heat stable cross-linking co-agent vulcanization system have been introduced in the developed natural rubber compounds of the anti-vibration rubber parts. These lead to a reduction of degradation of material properties, maintenance of the initial properties and increase of the fatigue life.
Technical Paper

Analysis of Vehicle Voice Recognition Performance in Response to Background Noise and Gender Based Frequency

2017-06-05
2017-01-1888
Voice Recognition (VR) systems have become an integral part of the infotainment systems in the current automotive industry. However, its recognition rate is impacted by external factors such as vehicle cabin noise, road noise, and internal factors which are a function of the voice engine in the system itself. This paper analyzes the VR performance under the effect of two external factors, vehicle cabin noise and the speakers’ speech patterns based on gender. It also compares performance of mid-level sedans from different manufacturers.
Technical Paper

Development of Eco-Driving Guide System

2011-10-06
2011-28-0034
The Eco-driving indicator is a colored lamp on a cluster to lead a driver to smoothen acceleration of a vehicle. Informed by the indicator, a driver learns how deep to push a gas pedal for a better fuel economy. The Eco-driving guide system outputs a vehicle fuel efficient state by the Eco-driving indicator. It is based on BSFC map, engine torque map, A/T shift pattern data, engine operation status and transmission operating status. With the Eco-driving guide system, vehicle fuel efficiency can be improved by 4∼26%.
Technical Paper

The Flexible EV/HEV and SOC Band Control Corresponding to Driving Mode, Driver's Driving Style and Environmental Circumstances

2012-04-16
2012-01-1016
Recently, in accordance with the increased interest of consumer in fuel efficiency due to the phenomenon of high oil price, complaints against actual fuel efficiency in the road in comparison with the certified fuel efficiency have been raised frequently. Especially in case of the hybrid vehicle which is highly popular for the reason of its high fuel efficiency compared with that of existing gasoline car, deviation in the fuel efficiency will be higher compared with that of gasoline car in accordance with the driving mode (downtown/highway), driver's driving style (wild/mild) and external environmental condition (gradient/temperature/altitude). To solve them, this paper developed a method so that the SOC (State Of Charge), EV/HEV mode transition point can be controlled variably in accordance with the driving mode, driver's driving style and external environmental condition by making the most of characteristics of hybrid.
Technical Paper

Automated Optimizing Calibration of Engine Driveability on the Dynamic Powertrain Test Bed

2013-10-14
2013-01-2588
Engine calibration on the powertrain test bed with transient mode is proposed with dynamic powertrain test bed having low inertia dynamometer. Automated ECU (Engine Control Unit) calibration system is completed with the combination of experimental design software, powertrain test bed, evaluation tools and their electrical interfaces. The process is composed up of the system interface definition, test design using DoE skill, test proceedings by step sequence of connecting systems, measured data collecting, mathematical model and optimization result extraction at the end. All the processes are automated by interfaces between the systems. Acceleration surge is minimized by proposed process by optimizing combustion control labels and tip in driveability is maximized by manipulating torque filter labels of EMS (Engine Management System) logic. Their detailed steps from the problem definition to the verification test results of improved design with vehicle test are presented.
Technical Paper

Design Optimization of Suspension Kinematic and Compliance Characteristics

2014-04-01
2014-01-0394
In the early stage of vehicle development process, it is customary to establish a set of goals for each kinematic and compliance (K&C) characteristic and try to find out design variables such as the location of hard points and bushing stiffness which can achieve these goals. However, since it is very difficult to find out adequate set of design variables which satisfy all the goals, many engineers should rely on their own experiences and intuitions, or repeat trial and error to design a new suspension and improve old one. In this research, we develop a suspension design process by which suspension K&C characteristic targets can be achieved systemically and automatically. For this purpose, design optimization schemes such as design of experiments (DoE) and gradient-based local optimization algorithm are adopted.
Technical Paper

A Sensor Fusion Digital-Map System for Driver Assistance

2013-04-08
2013-01-0734
A traffic situation is getting more complex in urban areas. Various safety systems of an automobile have been developed but fatal and serious accidents still can be made by driver's faults or distractions. The system supporting extend of driver's recognition area is going to be an important part of future intelligent vehicles in order to prevent accidents. In this paper we propose sensor fusion system based on a digital-map for driver assistance. The accurate localization of a host vehicle is achieved by a stereo vision sensor and a digital-map using polygon matching algorithm in urban area. A single-row laser scanner is used for tracking multiple moving objects. The coordinate transformation from sensor frame to global frame is performed to visualize the moving objects on a digital-map. An experiment was conducted in an urban canyon where the GPS signals are frequently interrupted.
Technical Paper

Optimization of the Crashworthiness of a Passenger Car Using Iterative Simulations

1993-11-01
931977
The paper describes an engineering project carried out to optimize the crashworthiness of an existing passenger car for frontal crash using a procedure relying on numerical simulation. An optimization target is defined in terms of an ideal acceleration pulse at the seats anchors. The acceleration time history and structural members are scanned in parallel to correlate the local acceleration peaks to specific structural members. Members details are iteratively modified in order to alter the accelerations and get closer to the target.
Technical Paper

The Development and Performance Simulation of Polychloroprene High Temperature Bush Type Engine Mount

1994-03-01
940888
In recent years, high performance engines and the reduction in engine room due to aerodynamic styling has caused increases in engine room temperature. Because of this increasing temperature, the conventional natural rubber engine mount is now at the marginal point on its performance and durability. Several heat resistant materials have been considered for engine mount applications because of this reason. Polychloroprene rubber could be a strong candidate for engine mount application due to its balance of heat resistance, dynamic properties, and fatigue life. This paper will discuss the development of the technology, property characteristics and part performance simulations on the HYUNDAI BUSH TYPE COMPLEX ENGINE MOUNT (for 2.0L DOHC ENGINE). This type of mount requires higher creep resistance and fatigue life than those of other designs, such as block or simple shear type mounts. Early evaluations of polychloroprene mounts have shown some deficiencies in creep resistance.
Technical Paper

A Technique to Identify the Structure Borne Sound Sources Induced by Powertrain Vibration Behavior

1995-05-01
951235
Identification of structure borne sound sources induced by the structural vibration of an automotive powertrain has been studied. Based on the principal component analysis which uses singular value decomposition of a matrix consisting of the auto- and cross-spectra, the operating vibrational analysis is performed. The quantitative description of the output power due to intrinsic incoherent source is addressed. The applicability of the technique is tested both numerically and experimentally. First, the coherence analysis is numerically carried out with a simple structure which is modeled as multi-input and single output to identify the structure borne noise generation process. Second, the actual vibrational behavior of a powertrain structure and the interior noise analysis of a car under the running condition are carried out. The technique is shown to be very effective in the identification of the structure borne noise sources.
Technical Paper

Development of Roof Crush Analysis Technique Using Simple Model with Plastic Hinge Concept

1996-02-01
960522
A computational technique for predicting roof crush resistance in the early design stage of vehicle development is presented in this paper. This technique developed a simple nonlinear finite element beam model with several nonlinear spring elements which represent plastic hinge behaviors after bending collapse. In general, these plastic hinge behaviors are apt to occur al each weak area of vehicle body structure. By idealizing actual sections as equivalent simple sections, maximum bending moments are calculated for all weak areas. Predicted results of roof crush resistance arc correlated well with test results.
X