Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Bridging the Gap between Open Loop Tests and Statistical Validation for Highly Automated Driving

2017-03-28
2017-01-1403
Highly automated driving (HAD) is under rapid development and will be available for customers within the next years. However the evidence that HAD is at least as safe as human driving has still not been produced. The challenge is to drive hundreds of millions of test kilometers without incidents to show that statistically HAD is significantly safer. One approach is to let a HAD function run in parallel with human drivers in customer cars to utilize a fraction of the billions of kilometers driven every year. To guarantee safety, the function under test (FUT) has access to sensors but its output is not executed, which results in an open loop problem. To overcome this shortcoming, the proposed method consists of four steps to close the loop for the FUT. First, sensor data from real driving scenarios is fused in a world model and enhanced by incorporating future time steps into original measurements.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

Noise analysis and modeling with neural networks and genetic algorithms

2000-06-12
2000-05-0291
The aim of the project is to reliably identify the set of constructive features responsible for the highest noise levels in the interior of motor vehicles. A simulation environment based on artificial intelligence techniques such as neural networks and genetic algorithms has been implemented. We used a system identification approach in order to approximate the functional relationship between the target noise series and the sets of constructive parameters corresponding to the cars. The noise levels were measured with a microphone positioned on the driver''s chair, and corresponded to a variation of the engine rotation of 600-900 rot/min. The database includes 45 different cars, each described by vectors of 67 constructive features.
Technical Paper

The development of in-vehicle unit of advanced vehicle information and communication system

2000-06-12
2000-05-0370
This paper presents an in-vehicle information system, AVICS in development. With AVICS, the driver could get the various information on traffic, news, weather, restaurants, and so on, which the AVICS information center provides via mobile telecommunication network. The driver requests the information to operator in center by voice with hands-free system or by handling the menu offered in the form of web-page. The in-vehicle unit for AVICS is designed to interface with wireless network with a built-in RF MODEM, to control NAVI system, and to display the information on the LCD monitor of AV system. The Internet browser is customized to parse specific HTML tags, application software is realized on 32-bit RISC processor. In this paper, we will overview the concept of AVICS and focus on development of in-vehicle unit of AVICS.
Technical Paper

Semi-Active Steering Wheel for Steer-By-Wire System

2001-10-01
2001-01-3306
Conventional steering system has a mechanical connection between the driver and the front tires of the vehicle, but in steer-by-wire system, there is no such a connection. Instead, actuators, positioned in the vehicle's front corners receive input from the control module and turn the front wheels accordingly. In steer-by-wire system, steering wheel is an important part that not only transfers driver's steering input to the controller but also provides a road feedback feeling to the driver's hand. Thus the reactive torque actuator, providing road feedback, plays an important role in steer-by-wire system. In conventional steer-by-wire-system, a motor was used as a reactive torque actuator. But using motor has some disadvantages such as an oscillatory feeling, and improper and potentially dangerous acceleration of the steering wheel by the motor when driver's hands are released from steering wheel abruptly.
Technical Paper

Advanced Lighting Simulation (ALS) for the Evaluation of the BMW System Adaptive Light Control (ALC)

2002-07-09
2002-01-1988
The Advanced Lighting Simulation (ALS) is a development tool for systematically investigating and optimizing the Adaptive Light Control (ALC) system to provide the driver with improved headlamps and light distributions. ALS is based on advanced CA-techniques and modern validation facilities. To improve night time traffic safety the BMW lighting system ALC has been developed and optimized with the help of ALS. ALC improves the headlamp illumination by means of continuous adaptation of the headlamps according to the current driving situation and current environment. BMW has already implemented ALC prototypes in real vehicles to demonstrate the advantages on the real road.
Technical Paper

The Stability Analysis of Steering and Suspension Parameters on Hands Free Motion

2002-03-04
2002-01-0620
Hands-free stability, one of the handling characteristics of a vehicle, is a stability criterion evaluated in case of a driver's steering wheel release after a certain steering input during driving. During the development process, a hands-free-unstable vehicle needs many steering and suspension parts to be repeatedly tested to improve the performance. In this paper, CAE methods are proposed to investigate easily the influence of the steering and suspension design parameters on the hands-free stability. And the results of CAE methods were compared with the prototype vehicle test to verify the validity of the methods.
Technical Paper

Development of Eco-Driving Guide System

2011-10-06
2011-28-0034
The Eco-driving indicator is a colored lamp on a cluster to lead a driver to smoothen acceleration of a vehicle. Informed by the indicator, a driver learns how deep to push a gas pedal for a better fuel economy. The Eco-driving guide system outputs a vehicle fuel efficient state by the Eco-driving indicator. It is based on BSFC map, engine torque map, A/T shift pattern data, engine operation status and transmission operating status. With the Eco-driving guide system, vehicle fuel efficiency can be improved by 4∼26%.
Technical Paper

The Flexible EV/HEV and SOC Band Control Corresponding to Driving Mode, Driver's Driving Style and Environmental Circumstances

2012-04-16
2012-01-1016
Recently, in accordance with the increased interest of consumer in fuel efficiency due to the phenomenon of high oil price, complaints against actual fuel efficiency in the road in comparison with the certified fuel efficiency have been raised frequently. Especially in case of the hybrid vehicle which is highly popular for the reason of its high fuel efficiency compared with that of existing gasoline car, deviation in the fuel efficiency will be higher compared with that of gasoline car in accordance with the driving mode (downtown/highway), driver's driving style (wild/mild) and external environmental condition (gradient/temperature/altitude). To solve them, this paper developed a method so that the SOC (State Of Charge), EV/HEV mode transition point can be controlled variably in accordance with the driving mode, driver's driving style and external environmental condition by making the most of characteristics of hybrid.
Technical Paper

A Sensor Fusion Digital-Map System for Driver Assistance

2013-04-08
2013-01-0734
A traffic situation is getting more complex in urban areas. Various safety systems of an automobile have been developed but fatal and serious accidents still can be made by driver's faults or distractions. The system supporting extend of driver's recognition area is going to be an important part of future intelligent vehicles in order to prevent accidents. In this paper we propose sensor fusion system based on a digital-map for driver assistance. The accurate localization of a host vehicle is achieved by a stereo vision sensor and a digital-map using polygon matching algorithm in urban area. A single-row laser scanner is used for tracking multiple moving objects. The coordinate transformation from sensor frame to global frame is performed to visualize the moving objects on a digital-map. An experiment was conducted in an urban canyon where the GPS signals are frequently interrupted.
Technical Paper

Influence of Forces on Comfort Feeling in Vehicles

2000-06-06
2000-01-2171
When investigating the posture comfort in vehicles two important influencing factors can be distinguished: In order to evaluate these influences a combined laboratory-field-experiment was carried out. A real car was equipped with cameras to record the body posture and the joint angles. The static forces exerted by the driver on his contact points were recorded in a corresponding mock-up. The forces to maintain the body posture were calculated. The following results were found:
Technical Paper

A Study on the Transfer Path Analysis of Brake Creep Groan Noise

2014-09-28
2014-01-2510
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. It is caused by the stick-sleep phenomenon at the lining and disc interface. Recently, the field claim of low frequency creep groan has increased. There are a lot of efforts to improve creep groan noise by means of modification of lining material. In this paper, Transfer path of creep groan noise was analyzed through ODS and TPA. Additionally the correlation between Source (Brake torque variation, Brake vibration) and Creep Groan Sound level was discussed. Finally countermeasure to Creep Groan noise was suggested.
Technical Paper

Development of Adaptive Powertrain Control Utilizing ADAS and GPS

2019-04-02
2019-01-0883
This paper introduces the advancement of Engine Idle Stop-and-Go (ISG, also known as Auto Engine Stop-Start) and Neutral Coasting Control (NCC) with utilizing Advanced Driver Assistance System (ADAS) and GPS. The ISG and the In-Neutral Coasting (also known as Sailing or Gliding) have been widely implemented in recent vehicles for improving their fuel economy. However, many drivers find them somewhat disturbing because they basically change behaviors of their cars from what they used to. This annoyance discourages usages of those functions and eventually undermines their benefit of fuel saving. In order to mitigate the problem, new ISG and NCC algorithms are proposed. As opposed to the conventional logics that rely only on driver’s pedal action, the new algorithms determine whether or not to enable those functions for the given driving condition, based on the traffic information obtained using ADAS sensors and the location data from GPS and navigation map.
Journal Article

On the Use of Driver-in-the-Loop (DIL) Systems in Commercial Vehicle Chassis Development

2017-01-10
2017-26-0242
A vehicle simulation model is developed, validated and integrated into a closed-loop virtual driving environment using a state-of-the-art hexapod driving simulator. Thirty variant states are implemented and evaluated subjectively on steering and handling performance quality and quantity. Standard open-loop objective testing manoeuvres are simulated and performance metrics are calculated, allowing for a systematic cross-correlation process. Graphical analysis of the correlation metrics proves that chassis changes may accurately be felt through the simulator interface. It is proposed how obtained correlation models may serve for driver-feel optimizing target setting in early vehicle development stages, frontloading a great deal of costly prototype testing. System requirements are established and benefits and limitations are portrayed.
X