Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Development of Hybrid System for Mid-Size Sedan

2011-11-07
Consumers design different PHEVs than expert analysts assume. Experts almost uniformly assume PHEVs that offer true all-electric driving for 10 to 60 miles; consumers are more likely to design PHEVs that do not offer true all-electric driving and have short ranges over which they use grid-electricity. Thus consumers? PHEV designs are less expensive. These consumer PHEV designs do, or don?t, produce lower GHG emissions than experts? PHEVs over the next ten years. The devil is in the details, i.e., which powerplant emissions to assign to new electricity demand: marginal or average. If (based on marginal powerplant emissions) it makes almost no difference whether we sell consumer-designed or expert-assumed PHEVs over the next ten years, yet as the grid continues to de-carbonize all-electric PHEV designs emerge as clearly the better option, there is a trajectory we could be on from blended, ?short range? PHEVs to all-electric ?long range? PHEVs.
Journal Article

A Study of Wheel Guards for Reduction of High Frequency Road-Noise

2015-04-14
2015-01-1309
This Study describes about the development of new concept' rear wheel guards for the reduction of Road Noise in the passenger vehicles. The new wheel guards are proposed by various frequency chamber concept and different textile layers concept. Two wheel guards were verified by small cabin resonance and vehicle tests. Through new developing process without vehicle test, Result of road noise will be expected if this concepts and materials of wheel guard are applied into automotive vehicle. As this concept consider tire radiation noise frequency and multilayers sound control multilayers, 2 concepts reduced road noise from 0.5 to 1.0dB. The proposed method of part reverberant absorption is similar to results of vehicle tests by part absorption index. Furthermore, optimization of frequency band in wheel guards will reduce more 0.5 dB noises. As a result of the application of Aimed Helmholtz and Multilayers concept, this paper classifies reduction of the road noise, cost and weights.
Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
Journal Article

Development of Noise Propensity Index (NPI) for Robust Brake Friction

2017-09-17
2017-01-2529
A semi-empirical index to evaluate the noise propensity of brake friction materials is introduced. The noise propensity index (NPI) is based on the ratio of surface and matrix stiffness of the friction material, fraction of high-pressure contact plateaus on the sliding surface, and standard deviation of the surface stiffness of the friction material that affect the amplitude and frequency of the stick-slip oscillation. The correlation between noise occurrence and NPI was examined using various brake linings for commercial vehicles. The results obtained from reduced-scale noise dynamometer and vehicle tests indicated that NPI is well correlated with noise propensity. The analysis of the stick-slip profiles also indicated that the surface property affects the amplitude of friction oscillation, while the mechanical property of the friction material influences the propagation of friction oscillation after the onset of vibration.
Technical Paper

Eco-Vehicle Battery System Big-Data Analysis and Fault Mode and Fault Tree Analysis (FTA) Related Robust System Development

2020-04-14
2020-01-0447
High-voltage battery system plays a critical role in eco-friendly vehicles due to its effect on the cost and the electric driving range of eco-friendly vehicles. In order to secure the customer pool and the competitiveness of eco-vehicle technology, vehicle electrification requires lowering the battery cost and satisfying the customer needs when driving the vehicles in the real roads, for example, maximizing powers for fun drive, increasing battery capacities for achieving appropriate trip distances, etc. Because these vehicle specifications have a critical effect on the high-voltage battery specification, the key technology of the vehicle electrification is the appropriate decision on the specification of the high-voltage battery system, such as battery capacity and power. These factors affect the size of battery system and vehicle under floor design and also the profitability of the eco-friendly vehicles.
Journal Article

The Prediction of Fuel Sloshing Noise Based on Fluid-Structure Interaction Analysis

2011-05-17
2011-01-1695
Fuel sloshing noise is involved with flow motion inside fuel tanks as well as structural characteristics of vehicles. Therefore it is necessary to introduce Fluid-Structure Interaction (FSI) analysis to predict sloshing noise phenomena more accurately. Purposes of this paper are to verify the reliability of the FSI method and suggest new CAE analysis processes to predict fuel sloshing noise. The vibration of floor panels induced by sloshing impact is evaluated through FSI analysis. A series of tests is carried out to validate simulation results. The numerical optimization of parameters is also carried out to reduce computation time. In addition, effects of sloshing noise factors are discussed based on simulation and test results. Lastly, a method to predict fuel sloshing noise by exerting sloshing load on a vehicle is suggested.
Journal Article

Research for Brake Creep Groan Noise with Dynamometer

2012-09-17
2012-01-1824
This paper deals with creep groan noise in vehicles which is a low frequency vibration problem at 20∼500Hz that appears in low brake pressures and extremely low speed especially in automatic transmission car, where there is a transition from static to dynamic condition. The vibration causing the noise is commonly thought to result from friction force variation between brake disc and pad in stick-slip phenomena. Simulation results are confirmed through dynamometer testing. Then presented noise contribution factor analysis by experimental approach between chassis components.
Technical Paper

Development of an Air Support System for Long-Distance Drive Comfort

2020-04-14
2020-01-0868
Passenger fatigue during long distance driving is greatly influenced by the comfort performance of the seat. Seat comfort performance is determined by the appropriate contour of the seat and the appropriate pad with sufficient thickness. The height of vehicle has been lowered to enhance car styling, and battery for electric vehicle applied to the underbody of the vehicle, reducing the package space of the seat in the vehicle. These external factors eventually lead to a reduced pad thickness of the seat cushion and compromise one of the important components in the seat cushion compartment, creating an uncomfortable cushioning problem when driving long distances. To improve the cushion composition of the seat within a limited package, air bladders are applied to the underside of the cushion pad. In addition, the function to support the buttocks using the air bladders of the lower cushion, similar to lumbar support for the back, was implemented to improve cushion comfort performance.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Technical Paper

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

2007-05-15
2007-01-2251
In this research, the influence of tire size and shape on sound radiation in the mid-frequency region was studied. First, the relationship between the structural wave propagation characteristics of a tire excited at one point and its sound radiation was identified by using FE and BE analyses. Then, by using that relationship, the effect of modifying a tire's aspect ratio, width and wheel diameter on its sound radiation between 300 Hz and 800 Hz was investigated. Finally, an optimization of the sound radiation was performed by modification of the tire structure and shape. It was found that most of a tire's structural vibration does not contribute to sound radiation. In particular, the effective radiation was found to occur at the frequencies where low wave number components of the longitudinal wave and the flexural wave first appear.
Technical Paper

Fatigue Strength Evaluation for the Leaf Spring of Commercial Vehicle Considering U Bolt Fixing Force

2007-04-16
2007-01-0853
Suspension system of vehicle is very important because it has an effect on ride comfort and safety. And the leaf spring is one of the major parts of commercial vehicle. By that reason it has to be designed to operate under severe condition to ensure enough endurance. But the traditional method for fatigue design needs repeated fatigue tests for each design according to its geometry, material, and operating condition. This means that a lot of time and money is needed for those tests. Thus, in this paper, a fatigue design method for leaf spring based on numerical analysis is proposed. At first, stress analysis is performed to get the stress under operation load or rig tests. And fatigue analysis is performed to get the fatigue life and to ensure the safety of leaf spring. Through this study, design parameters that play vital role in fatigue life of the leaf spring can be found out.
Technical Paper

Development of Mild Hybrid City Bus with a Single Voltage Source of 28 V

2008-04-14
2008-01-0086
The most popular issues nowadays in the automotive industry include reduction of environmental impacts by emission materials from automobiles as well as improvement of fuel economy. This paper deals with development of a ¡mild-hybrid¡ system for a city bus as an effort to increase fuel economy in a relatively reasonable expense. Three different technical tactics are employed; an engine is shut down at an engine idle state, a vehicle kinetic energy when the bus is decelerated is re-saved to a battery in the form of electricity, and finally the radiator cooling fan is operated by an electric motor using the saved electric energy with an optimal speed control. It has been demonstrated through the driving tests in a specific city mode, ¡Suwon city mode¡, that an average fuel economy is improved more than 12%, and the system can be a feasible choice in a city bus running in a city mode experiencing many stop and go¡s.
Technical Paper

The Aesthetic Analysis of Sporty Design Factors in a Sports Car

2008-04-14
2008-01-0563
The design of a product is becoming more important and it affects product preference and buying decision. The objectives of this study are first to determine the major elements affecting the feeling of exterior design from aesthetic engineering point of view, and then to extract the highly correlated design factor within the experimental result. Firstly, the buying preference is highly affected by the dynamic and elegant factors. Through deepening analysis using only 2-door type car, the ‘Cowl and Deck Point Angle * Overall Length / Overall Height’ factor is highly positive correlated, and the ‘Rear Overhang’ factor is highly negative correlated with buying preference. There are three special features of a sports car; firstly, stable (long wheel base) and aggressive (lean towards the front) design makes consumers feel dynamic. Secondly, the consumers prefer modern and sedan-like coupe design. Thirdly, sleek design line and consistent character line are preferred.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

An Optimization of Dual Continuously Variable Valve Timing for Reducing Intake Orifice Noise of a SI Engine

2008-04-14
2008-01-0892
For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, various types of system for variable valve timing were developed by many automotive researchers. In this paper, we investigated the relationship between valve timing and intake orifice noise, and suggested how to improve NVH (Noise, Vibration and Harshness) performance as well as engine torque. Some experiments using the engine dynamometer were carried over about 150 different operating conditions. BEM analysis was also conducted in order to calculate acoustic modes of intake system. The results show that the valve timing and overlap of breathing systems have influence on NVH behavior, especially intake orifice noise over whole range of operating conditions. Valve timing and overlap of intake and exhaust valve were optimized in the view of sound quality as well as overall noise level.
Technical Paper

Reduction of Interior Booming Noise for a Small Diesel Engine Vehicle without Balance Shaft Module

2009-05-19
2009-01-2121
Applying BSM (Balance shaft module) is a very common and effective way to reduce the 2nd-order powertrain vibration which is caused by the ill-balanced inertia force due to the oscillating masses inside an engine. However, the adoption of a BSM can also produce undesirable things especially in cost, fuel economy, starting performance, and so on. Therefore, for small vehicles, in which case cost and weight are key factors at the development stage, it is often required to develop competitive NVH performance without the expensive apparatus like a BSM. In this paper, in order to develop interior noise and vibration of a 4-cylinder vehicle without a BSM, we analyzed the contribution of some transfer paths for powertrain vibration, and could reduce interior booming noise by tuning the dynamic characteristic of the engine mount which was one of the largest transfer paths.
Technical Paper

A Study on the Optimization of Body Structure for Rattle Noise by Exciting Woofer Speakers

2009-05-19
2009-01-2110
With the recent development of technologies for interpreting vibration and noise of vehicles, it has become possible for carmakers to reduce idle vibration and driving noise in the phase of preceding development. Thus, the issue of noise generation is drawing keen attention from production of prototype car through mass-production development. J. D. Power has surveyed the levels of customer satisfaction with all vehicles sold in the U.S. market and released the Initial Quality Study (IQS) index. As a growing number of emotional quality-related items are added to the IQS evaluation index, it is necessary to secure a sufficiently high quality level of low-frequency speaker sound against rattle noise. It is required to make a preceding review on the package tray panel, which is located at the bottom of the rear glass where the woofer speakers of a passenger sedan are installed, the door module panel in which the door speakers are built.
Technical Paper

Drivability Development Based on CoSimulation of AMESim Vehicle Model and Simulink HCU Model for Parallel Hybrid Electric Vehicle

2009-04-20
2009-01-0725
Parallel Hybrid Electric Vehicle consists of internal combustion engine, engine clutch, motor, automatic transmission, Integrated Starter Generator (ISG), and battery. Due to hybridizations such as using engine clutch to disengage the internal combustion engine and omitting torque converter from the automatic transmission to increase fuel economy, drivability will not be same as conventional vehicle. To ensure drivability comparable to conventional vehicle, dynamic simulation has been utilized to foresee the drivability issues for the proposed hybrid system and ideas for improvements are tested in simulation. CoSimulation of AMESim vehicle model and Simulink Hybrid Control Unit (HCU) model has been used to test and improve HCU logic.
Technical Paper

An Optimized Control Strategy for Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1329
A systematic process of optimization is suggested to obtain the best control maps for a parallel type hybrid electric vehicle. Taking the fuel consumption as the cost function and driving cycle as part of the constraints, an optimization problem for CVT pulley ratio control and motor torque control can be formulated. The change of the battery charge state between the start and end point of the given driving cycle also works as a constraint. In order to see the effect of various control strategies on system behavior and overall fuel consumption, a simulation model was built to accommodate the functional blocks representing hybrid powertrain subsystem components and corresponding control units.
Technical Paper

Design Optimization Analysis of Body Attachment for NVH Performance Improvements

2003-05-05
2003-01-1604
The ride and noise characteristics of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning. This paper presents the procedure of body attachment stiffness analysis, which contains the correlation between experimental test and FEA. It is concluded that the most important factors are panel thickness, section type and mounting area size. This procedure makes it possible to find out the weak points before proto car and to suggest proper design guideline in order to improve the stiffness of body structure.
X