Refine Your Search

Topic

Author

Search Results

Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Technical Paper

A Study on the Advanced Technology Analysis Process of Steering System for Idle Performance

2007-05-15
2007-01-2339
This paper describes the optimal design process of the steering column system and the supporting system. At the initial concept stage of development process, a design guide is proposed to obtain sufficient stiffness of the steering system while reducing idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, in which separated vibration modes among systems by applying Vibration Mode Map at the initial stage of design process. This study also makes it possible to provide design guideline for optimal dynamic damper system using CAE (computer aided engineering) analysis. The damper FE (finite element) model is added to vehicle model to analyze the relation between the frequency and the sensitivity of steering column system. This analysis methodology enables target performance achievement in early design stage and reduction of damper tuning activity after proto car test stage.
Technical Paper

E3 System – A Two speed Accessory Belt Drive System for Reduced Fuel Consumption

2008-06-23
2008-01-1521
All vehicles have some or all accessories such as alternators, air conditioner compressors, power steering pumps, and water pumps. These devices are mounted on the front of the engine and are powered by a pulley mounted on the front of the crankshaft. This power represents a parasitic loss and this loss is greater at higher engine speeds. To reduce the impact of the accessories on the engine, a two speed transmission that reduces the accessories speed at off-idle conditions was designed, implemented, and tested on several vehicles. The vehicles were tested for fuel economy on the Japanese 10.15 Mode driving cycle, the FTP75 city cycle, and the HWFET Highway Cycle. Results showed an average of 5% reduction in fuel consumption and a corresponding 5% in CO2 with no impact of accessory performance and vehicle drivability. Simulations with GT-Drive software was used to determine the optimum speed reduction and the threshold switching speed that maximizes fuel savings.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Test Method Development and Understanding of Filter Ring-off-Cracks in a Catalyzed Silicon Carbide (SiC) Diesel Particulate Filter System Design

2008-04-14
2008-01-0765
As the use of diesel engines increases in the transportation industry and emission regulations tighten, the implementation of diesel particulate filter systems has expanded. There are many challenges associated with the design and development of these systems. Some of the key robustness parameters include regeneration, efficiency, fuel penalty, engine performance, and durability. One component of durability in a diesel particulate filter (DPF) system is the filter's ability to resist ring-off-cracking (ROC). ROC is described as a crack caused primarily by thermal gradients, differentials, and the resulting stresses within the DPF that exceed its internal strength. These cracks usually run perpendicular to the substrate flow axis and typically result in the breaking of the substrate into separate halves.
Technical Paper

The Studies of Crash Characteristics According to Chassis Frame Types

2001-03-05
2001-01-0119
There are various tests for evaluating how well a vehicle protects people in a crash. The frontal and offset crash test is one of the most important tests that evaluate the crashworthiness of a vehicle. In this paper, we will discuss some parameters that have a major effect on the amount and pattern of intrusion into the occupant compartment during the frontal and offset crash test. And the characteristics of impact are described according to the types of chassis frame, T-type frame and #-type frame. The T-frame has worse performance than #-frame in crash, So it is necessary to make stronger dash compartments in T-frame. We will design a vehicle which has optimized body, chassis structure and material selections by controlling major parameters of frontal crash performance.
Technical Paper

Development of Smart Shift and Drive Control System Based on the Personal Driving Style Adaptation

2016-04-05
2016-01-1112
In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel

2017-03-28
2017-01-1567
This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
Technical Paper

Study of Active Steering Algorithm Logic in EPS Systems by Detecting Vehicle Driving Conditions

2017-03-28
2017-01-1481
Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
Technical Paper

Analysis of Muscle Fatigue for Urban Bus Drivers using Electromyography

2011-04-12
2011-01-0801
Professional bus drivers are highly exposed to physical fatigue and work-related injuries because driving task includes complicated actions that require a variety of ability and cause extreme concentration or strain. For this reason, there has always been some sense of concern regarding driver fatigue, especially for drivers of commercial vehicles. In this study, we have tried to analyze quantitative fatigue degree of urban bus drivers by measuring their physiological signals. The investigation is made up of the following approaches: a traditional questionnaire survey and video-ethnographic method with 4-way cameras. The close-circuit cameras are installed to observe the upper and lower body of real drivers when they are in driving or even resting. This approach can help to understand urban bus drivers' behaviors and fatigue-related issues. Based on the video-ethnographic investigation results above, we have got certain patterns of drivers.
Technical Paper

Test Method for Operational Deflection Shape Analysis of Squealing Brake Disc in Dynamic Condition

2012-09-17
2012-01-1807
In order to reduce brake squeal noise, it is important to identify operational deflection shape (ODS) of brake disc while squeal arises. However, in the conventional modal analysis and optical measurement, it is only able to identify limited ODS because of the technical limits. This paper details the test method to identify ODS in radial and tangential as well as axial direction of a brake disc in driving condition. Vibrational signal of a rotating disc was obtained by triaxial accelerometer installed to solid type discs/cooling fins of ventilated type discs, then ODS of disc were analyzed through digital signal processing.
Technical Paper

Prediction and Optimization of Blocked Force Changes of a Suspension System Using Bush Stiffness Injection Method

2022-06-15
2022-01-0956
Automotive OEMs have introduced a new development paradigm, modular architecture development, to improve diversity quality and production efficiency. It needs solid fundamentals of system-based performance evaluation and development for each system level and single component level. When it comes to NVH development, it is challenging to realize the modular concept because noise and vibration should be transferred through various transfer path consisting of many parts and systems, which interact with each other. It is challenging for a single system of interest to be evaluated independently of the adjacent parts and environments. In this study, a new system-based development process for a vehicle suspension was investigated by applying blocked force theory and FRF-based dynamic substructuring. The objective is to determine the better dynamic stiffness distribution of many bushes installed in a suspension system in the frequency range corresponding to road noise.
Technical Paper

A Study of Suspension Tightening Torque on the R&H Performance of High Performance Vehicles

2018-04-03
2018-01-0577
Suspension is a system which operates dynamically according to road condition unlike other system statically mounted to the body. Especially this is more remarkable in high performance vehicle because there are more high inputs from road to suspension than normal vehicle. For this reason, the tightening torque of suspension system of high performance vehicle is more important than other systems and normal vehicle. To support the clamping between parts against force from road when cornering, optimized tightening torque is required to maximize R&H performance. For this optimization, it should be conducted first to comprehend how much performance effects on vehicle by tightening torque. This paper presents relationship between tightening torque of suspension parts hardware and R&H performance.
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

Developing the Thermoplastic Water Pump and Power Steering Pulley for a Passenger Car

1998-02-01
980736
The thermoplastic automotive pulley has been developed and will be commercialized to high volume production that achieves cost saving and weight reduction over other automotive pulleys in the metal and thermosetting resin by Hyundai Motor Company. Design feature incorporated in this automotive pulley allow it to be manufactured and assembled onto the water pump more efficiently in consequence of design integration with the water pump and power steering pulley. However, the harsh environment and dynamic loads that the thermoplastic pulley has to withstand required extensive CAE analysis and testing of the molded parts and the standard glass reinforced PA was selected for the application to maximize cost savings. The key aspects of the plastic automotive pulley as well as its advantage are presented.
Technical Paper

Multidimensional Measure of Perceived Shift Quality Metric for Automatic Transmission Applying Kansei Engineering Methods

2013-04-08
2013-01-0336
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
X