Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

High-Bandwidth Mechanical Hardware-In-The-Loop Emulation of Structural Dynamics for More Efficient NVH Development and Testing

2022-06-15
2022-01-0953
Numerical simulations offer a wide range of benefits. Therefore, they are widely used in research and development. One of the biggest benefits is the possibility of automated parameter variation. This allows testing different scenarios very quickly. Nevertheless, physical experiments in the laboratory or on a test rig are still, and will remain, necessary. Physical experiments offer benefits, e.g., for very complex and/or nonlinear systems and are required for the validation of numerical models. To enhance the quality of experimental NVH investigations and to make use of the benefits of numerical simulation during experimental investigations at the same time, numerical models can be integrated into physical test rigs using the mechanical hardware-in-the-loop (mHIL) method (also referred to as real-time dynamic substructuring, hybrid testing or active control of impedance).
Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
X