Refine Your Search

Topic

Search Results

Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Study of Sealing Mechanism to Prevent Oil Leakage for the Thermoplastic Cylinder Head Cover

2007-04-16
2007-01-0566
Most of car makers nowadays produce Cylinder Head Cover with Thermoplastic to get the benefit of weight and cost reduction. The production of Cylinder Head Cover with Thermoplastic brings a number of benefits such as enhancement in productivity, design freedom, integration with other parts and reduction in weight. However, NVH characteristics, sealing performance issues possibly caused by design of cover and gasket and loss of properties of materials when used for long-term period still remain as critical tasks to be solved. Especially in case of car OEMs strongly insist that we have to meet their severe specifications requirements so as to satisfy their customers' growing demand. Sealing performance is one of the core factors, which require continuous effort and studies to meet the OEM's specifications.
Technical Paper

The Procedure for Improving R&H Performance of the New 2010 Hyundai Sonata by Modal Parameter Modification of Its Body

2010-04-12
2010-01-1136
Various deformation shapes of the vehicle body were investigated for the purpose to establish vehicle body's performance criteria which correlates well to handling performance and ride comfort. Using CAE tool, the dynamic behavior of a structure by its modal parameter can be described instead of by its nodes and elements. Each modal characteristic in a dynamic system is reduced by its modal stiffness, its modal mass and its damping parameter in the model. This technology offers not only computational efficiency but also parametric model enabling easy what-if simulation. This reduced model can be obtained by modal test as well as simulation of full FE model. It was also investigated that which mode is sensitive to ride or handling performance using the parameterized model. The body stiffness of the brand new 2010 SONATA was improved on reference to the sensitivity analysis. The ride and handling performance of the 2010 SONATA were verified by computer simulation and vehicle field test
Technical Paper

Development of Accelerated Corrosion Test Mode Considering Environmental Condition

2002-03-04
2002-01-1231
Accelerated simulation of vehicle corrosion in a controlled environment not only involves large chambers for actual vehicle tests, but also requires careful consideration of interactions between various parameters given a short time period within which the test is bounded. A new corrosion durability test mode reproducing various field conditions using salt spray, climatic, sunlight simulation and cold chambers has been developed. Verification of the test mode is carried out using four actual vehicle corrosion tests correlated against used cars of Nort h America and Northern Europe. The process of new corrosion test mode is discussed along with the characteristics of the test chambers.
Technical Paper

Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel

2017-03-28
2017-01-1567
This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
Technical Paper

Co-operative Control of Regenerative Braking using a Front Electronic Wedge Brake and a Rear Electronic Mechanical Brake Considering the Road Friction Characteristic

2012-09-17
2012-01-1798
In this study, a co-operative regenerative braking control algorithm was developed for an electric vehicle (EV) equipped with an electronic wedge brake (EWB) for its front wheels and an electronic mechanical brake (EMB) for its rear wheels. The co-operative regenerative braking control algorithm was designed considering the road friction characteristic to increase the recuperation energy while avoiding wheel lock. A powertrain model of an EV composed of a motor, and batteries and a MATLAB model of the control algorithm were also developed. They were linked to the CarSim model of the vehicle under study to develop an EV simulator. The EMB and EWB were modeled with an actuator, screw, and wedge to develop an EMB and EWB simulator. A co-simulator for an EV equipped with an EWB for the front wheels and an EMB for the rear wheels was fabricated, composed of the EV and the EMB and EWB simulator.
Technical Paper

Integrated Control of In-Wheel Motor and Electronic Limited Slip Differential for Lateral Stability and Maneuverability

2021-04-06
2021-01-0974
This paper presents an integrated control of in-wheel motor (IWM) and electronic limited slip differential (eLSD) to enhance the vehicle lateral stability and maneuverability. The two actuators are utilized in the proposed controller to achieve separate purposes. The IWM controller is designed to modify the understeer gradient for enhanced handling characteristic and maneuverability. The eLSD controller is devised to improve the lateral stability to prevent oversteer in a severe maneuver. The proposed controller consists of a supervisor, upper-level controller and lower-level controller. The supervisor determines a target motion based on a target understeer gradient for IWM control and a yaw rate reference for eLSD control. The upper-level controller generates a desired yaw moment for the target motion. In the lower-level controller, the desired yaw moment is converted to the control inputs for IWMs in the two front wheels and eLSD at the rear axle.
Technical Paper

A Conceptual Analysis in the Early Design Stage for the Road-Noise Reduction using FRF-Based Substructuring

2022-03-29
2022-01-0312
NVH analysis based on numerical simulations before actual test vehicle is available becomes common process in the automotive industry. Furthermore, the latest work scope is extending even to conceptual study in the very early design stage, beyond traditional numerical simulations simply using 3-D CAD data. In case when reasonable information is provided at this very early vehicle development stage, a better decision on the design concept would be possible, and subsequent design process can be carried out in more efficient manner. The core of this trend is that it allows us to predict vehicle performance at the conceptual design stage without 3-D CAD data, and then, with this prediction, to suggest meaningful design directions for next stage. From this point of view, FRF-Based Substructuring (FBS) methodology has potential to be used as an appropriate tool for this purpose.
Technical Paper

Enhancing Meta Model of the Brake Pad Friction Coefficient Using the Explainable Machine Learning

2022-09-19
2022-01-1175
Recently, increasing system complexity and various customer demands result in the need for highly efficient vehicle development processes. Once the brake torque is predicted accurately during the driving scenario in the earlier stage, it will be able to prevent the changing the vehicle or brake system design to satisfy the legal regulation and customer requirement. As brake torque performance target allocate brake pad friction coefficient level and characteristic, the accurate friction coefficient prediction should be preceded for accurate prediction for brake torque. Generally, the friction coefficient of the brake pad is known to vary nonlinearly depending on the physical properties of the disc and the pad, as well as the brake disc rotational speed, the disc temperature, and the hydraulic pressure. Furthermore, it varies depending on the driving scenario even when other conditions are the same. Therefore, it is necessary to apply new methods to solve these challenges.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

Development of Fuel Cell Hybrid Vehicle by Using Ultra-Capacitors as a Secondary Power Source

2005-04-11
2005-01-0015
Hyundai motor company has developed a fuel cell hybrid vehicle that has ultra-capacitors as a secondary power source. The simulation of fuel cell vehicles allows the user to analyze various types of fuel cell systems and hybrid configurations before implementing into a real system and to reduce the development time and cost. Before implementing fuel cell vehicles, a fuel cell vehicle simulation model, that has component modularity and forward facing characteristics, was developed. The simulation model was used in designing the fuel cell hybrid vehicle to select component sizes and a hybrid configuration. The hybridization by using ultra-capacitors provided better fuel economy and power response than the hybridization by using batteries.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Diagnosis and Prognosis of Chassis Systems in Autonomous Driving Conditions

2023-04-11
2023-01-0741
Expanding various future mobilities such as purpose built vehicle (PBV), urban air mobility (UAM), and robo-taxi, the application of autonomous driving system (ADS) technology is also spreading. The main point of ADS is to ensure safety by monitoring vehicle anomalies to prevent functional failure or accident. In this study, a model-based diagnosis and prognosis process was established using degradation data generated during autonomous driving simulation. A vehicle model was designed using Modelica/Dymola, and autonomous driving simulation was performed by integrating the lane keeping assistant (LKA) system with the vehicle model using Matlab/Simulink. Degradation data for the 3 components (a shock absorber damper, a suspension bush, and a tire) of the chassis system were input into the integrated simulation model. The degradation behavior was monitored with K-nearest neighbor (K-NN) and Gaussian mixture model (GMM).
Technical Paper

Development of a Vehicle Electric Power Simulator for Optimizing the Electric Charging System

2000-03-06
2000-01-0451
The electric power system of a modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. The electric power system of a vehicle consists of two major components: a generator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. In order to avoid the over/under design problem of the electric power system, an easy-to-use and inexpensive simulation program may be needed. In this study, a vehicle electric power simulator is developed. The simulator can be utilized to determine the optimized capacities of generators and batteries appropriately. To improve the flexibility and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC.
Technical Paper

Analysis of Sensitivity and Optimization for Chassis Design Parameters on the X-Wind Stability

2015-03-10
2015-01-0025
In the view point of driving safety, the crosswind sensitivity of a vehicle becomes more important, as the driving speed in highway gets higher in these days. The sensitivity of a vehicle to crosswind depends on many factors, including the design of the suspension and aerodynamics of the body, etc. However, the knowledge about this phenomenon has still to be improved, in order to develop vehicle with optimum characteristics for crosswind stability. In this research, the physics behind the sensitivity of a vehicle is discussed in detail through various kinds of virtual test using computer aided engineering (CAE) simulation scheme. In the first, a reliable simulation model for vehicle, driver, wind generator and interactions among them is built. This simulation model is verified by comparison with test results of real vehicle. Then, the sensitivity analysis is carried out to find out the most influential design parameters.
Journal Article

High-Bandwidth Mechanical Hardware-In-The-Loop Emulation of Structural Dynamics for More Efficient NVH Development and Testing

2022-06-15
2022-01-0953
Numerical simulations offer a wide range of benefits. Therefore, they are widely used in research and development. One of the biggest benefits is the possibility of automated parameter variation. This allows testing different scenarios very quickly. Nevertheless, physical experiments in the laboratory or on a test rig are still, and will remain, necessary. Physical experiments offer benefits, e.g., for very complex and/or nonlinear systems and are required for the validation of numerical models. To enhance the quality of experimental NVH investigations and to make use of the benefits of numerical simulation during experimental investigations at the same time, numerical models can be integrated into physical test rigs using the mechanical hardware-in-the-loop (mHIL) method (also referred to as real-time dynamic substructuring, hybrid testing or active control of impedance).
Technical Paper

Development, System Integration and Experimental Investigation of an Active HVAC Noise Control System for a Passenger Car

2020-09-30
2020-01-1538
Current developments in the automotive industry such as electrification and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise in vehicles. As different stochastic noise sources such as rolling and wind noise as well as noise radiated by the ventilation system are becoming more noticeable and as passive measures for NVH optimization tend to be heavy and construction-space intensive, current research activities focus on active reduction of noise caused by the latter mentioned sources. This paper illustrates the development, implementation and experimental investigation of an active noise control system integrated into the ventilation duct system of a passenger car.
X