Refine Your Search

Topic

Search Results

Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

Noble Materials for Thin-Walled Bumper Fascia with Enhanced Processibility and Dimensional Stability

1998-02-01
980105
A new noble material for automotive bumper fascia has been developed by compounding of ethylene-propylene block copolymers with ethylene-α-olefin copolymers and some additives. Also mineral fillers are added, if necessary. This material is suitable for injection molding of large parts including automotive bumper fascia. By using selected rubbers which have proper melt viscosity, molecular weight, and co-monomer content, and adding modified polymer containing polar group, it has enhanced processibility and paintability maintaining general properties such as tensile strength, impact strength at low temperature, and thermal and UV stability. The remarkable characteristics of this material is good processibility compared to the conventional TPOs. This material has especially high melt flow index(20∼30g/10min at 230°C) and stable flow behavior at the processing conditions.
Technical Paper

Partial Elasto-Hydrodynamic Lubrication Analysis for Cylindrical Conformal Contact Model Considering Effect of Surface Wave

2007-08-05
2007-01-3533
Numerous machine elements are operated in mixed lubrication regime where is governed by a combination of boundary and fluid film effects. The direct contact between two surfaces reduces a machines life by increasing local pressure. In order to estimate machine's life exactly, the effect of asperity contact should be considered in the lubrication model. In this study, new 3-dimensional partial elasto-hydrodynamic lubrication (PEHL) algorithm is developed. The algorithm contains the procedures to find out solid contact regions within the lubricated regime and to calculate both the pressure by fluid film and the contact pressure between the asperities of the solids. Using the algorithm, we conducted the PEHL analysis for the contact between the rotating shaft and the inside of pinion gear. To investigate the effect of surface topology two different surfaces with sinusoidal profile are used. Both film thickness and pressure are calculated successfully through the PEHL algorithm.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

A Study on the Influence of Plastic Intake Manifold on the Performance and NVH of In-line 4 Cylinder Gasoline Engine

1998-02-01
980728
The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. Moreover, the use of plastic for intake manifold is regarded as a key for further development of so called an “intake modular system”. As a secondary effect, the engine power can be increased with the help of improved interior surface roughness and lowered air temperature. With regard to NVH, however, plastic intake manifold is considered somewhat negative since it is less rigid and less dense than aluminum one. In this paper, the mechanism that plastic intake manifold affects the performance and NVH of in-line 4 cylinder gasoline engine is presented. In connection with engine performance, air flow efficiency of not only intake manifold itself but also other components of intake system and also cylinder head is evaluated.
Technical Paper

Study of Sealing Mechanism to Prevent Oil Leakage for the Thermoplastic Cylinder Head Cover

2007-04-16
2007-01-0566
Most of car makers nowadays produce Cylinder Head Cover with Thermoplastic to get the benefit of weight and cost reduction. The production of Cylinder Head Cover with Thermoplastic brings a number of benefits such as enhancement in productivity, design freedom, integration with other parts and reduction in weight. However, NVH characteristics, sealing performance issues possibly caused by design of cover and gasket and loss of properties of materials when used for long-term period still remain as critical tasks to be solved. Especially in case of car OEMs strongly insist that we have to meet their severe specifications requirements so as to satisfy their customers' growing demand. Sealing performance is one of the core factors, which require continuous effort and studies to meet the OEM's specifications.
Technical Paper

E3 System – A Two speed Accessory Belt Drive System for Reduced Fuel Consumption

2008-06-23
2008-01-1521
All vehicles have some or all accessories such as alternators, air conditioner compressors, power steering pumps, and water pumps. These devices are mounted on the front of the engine and are powered by a pulley mounted on the front of the crankshaft. This power represents a parasitic loss and this loss is greater at higher engine speeds. To reduce the impact of the accessories on the engine, a two speed transmission that reduces the accessories speed at off-idle conditions was designed, implemented, and tested on several vehicles. The vehicles were tested for fuel economy on the Japanese 10.15 Mode driving cycle, the FTP75 city cycle, and the HWFET Highway Cycle. Results showed an average of 5% reduction in fuel consumption and a corresponding 5% in CO2 with no impact of accessory performance and vehicle drivability. Simulations with GT-Drive software was used to determine the optimum speed reduction and the threshold switching speed that maximizes fuel savings.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Analysis of the Gear Shift Mechanisms by R-R Chart Method

2001-03-05
2001-01-1163
A new point of view in automatic transmission is proposed by R-R chart, which is a new analytic method based on the linearity of planetary gear and gear shift mechanism. The R-R chart is a visual tool to describe the whole motion of each rotational element of planetary gears in relation to the gear shift mechanism. Therefore, anyone can easily find on R-R chart not only the substance of the gear shift mechanisms in present automatic transmissions but also new gear shift mechanisms for the future automatic transmissions. This paper shows that the R-R chart is unique in 4-speed automatic transmissions with fixed compound planetary gear sets. As a result of the R-R chart application, this paper classifies the fixed compound planetary gear sets with 4 elements into 12 sets and the gear shift mechanisms into 3 types. Also, 4 R-R characteristic equations are derived as a correlation between speed ratios in 4-speed automatic transmissions.
Technical Paper

The Unified Relationship between Torque and Gear Ratio and Its Application in Multi-Step Automatic Transmissions

2016-04-05
2016-01-1098
The market demands for CO2 reduction and fuel economy have led to a variety of new gear set concepts of automatic transmissions with 4 planetary gear sets and 6 shift elements in recent years. Understanding the relationship between the torque of clutch and brake and gear ratio in the design stage is very important to assess new gear set concepts and to set up the control strategy for enhancing shift quality and to reduce the heat generation of clutch and brake. In this paper, a new systematic approach is used to unify the relationship between torque and gear ratio during the gear shift for all multi-step planetary automatic transmissions. This study describes the unified concept model with a lumped inertia regardless of the specific transmission layout and derives the principal unified relationship equations using torque and energy analysis, which prove that the sum of brake torque is always gear ratio -1 in every in-gear.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

Study of Active Steering Algorithm Logic in EPS Systems by Detecting Vehicle Driving Conditions

2017-03-28
2017-01-1481
Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

Development New Organic Composite Materials with Excellent Long-Term High-Temperature Durability and Reliability for Automotive Parts

2018-04-03
2018-01-0151
In recent years, the emerging technology competitions in automotive industry are improving engine efficiency and electronizing for coping with stringent fuel-economy regulations. However, fuel-economy technologies such as engine down-sizing and numerous electronic parts entrust burden plastic materials acing as mainly electric insulation and housing to have to be higher performance, especially temperature endurance. Engineering plastics (EPs) have critical limitations in terms of degradation by heat. Heat-resisting additives in EP are generally used to be anti-degradation as activating non-radical decomposition of peroxide. However, it could not be effective way to impede the degradation in long term heat aging over 1,000 hours at high temperature above 180 °C. In this study, we suggested the new solution called ‘shield effect’ that is purposeful oxidation at the surface and local crystallization of EP to stop prevent penetrating oxygen to inside of that.
Technical Paper

A Development of the High-toughness Nitriding to Reduce Heat Treatment Distortion of AT Annulus Gear

2013-04-08
2013-01-1769
In terms of reducing the gear noise of automatic transmission, improvement of heat treatment distortion of the annulus gear is very important, because annulus gear is very sensitive heat treatment due to thin walled ring-like shape. Nitriding is very effective method to meet the both requirements for heat treatment distortion and durability of the annulus gear, as compared with conventional carburizing. However, conventional nitriding has problems to be applied for annulus gear, such as brittleness of compound layer and low adhesion strength between compound layer and matrix. In this research, we developed the high toughness nitriding and greatly improved the problems as mentioned above, by controlling gas pressure and temperature.
Technical Paper

Development of Polymer Composite Battery Pack Case for an Electric Vehicle

2013-04-08
2013-01-1177
A battery pack case of an electric vehicle was developed with a fibrous thermoplastic composite material. Due to cost effectiveness, long-fiber-reinforced thermoplastics by direct process (D-LFT) were adopted. PA6 (Polyamide 6)-based composites were processed using a D-LFT pilot machine at the temperature range between 250° and 290°. Glass and carbon fibers were added in the matrix varying the mixture ratio of the fibers while keeping the weight fraction 40%. The increase of carbon fibers in the mixture increased tensile modulus and strength, however, decreased Izod impacts strength. The fatigue life of developed composites was evaluated by fatigue tests in tension, which were over one million cycles at the maximum fatigue loading less than 60% of the composite strength. Associated with fiber orientation, anisotropic mechanical behavior was investigated in terms of flexural properties and mold shrinkage.
Technical Paper

Developing the Thermoplastic Water Pump and Power Steering Pulley for a Passenger Car

1998-02-01
980736
The thermoplastic automotive pulley has been developed and will be commercialized to high volume production that achieves cost saving and weight reduction over other automotive pulleys in the metal and thermosetting resin by Hyundai Motor Company. Design feature incorporated in this automotive pulley allow it to be manufactured and assembled onto the water pump more efficiently in consequence of design integration with the water pump and power steering pulley. However, the harsh environment and dynamic loads that the thermoplastic pulley has to withstand required extensive CAE analysis and testing of the molded parts and the standard glass reinforced PA was selected for the application to maximize cost savings. The key aspects of the plastic automotive pulley as well as its advantage are presented.
Technical Paper

Multidimensional Measure of Perceived Shift Quality Metric for Automatic Transmission Applying Kansei Engineering Methods

2013-04-08
2013-01-0336
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

Road Noise Reduction Using a Source Decomposition and Noise Path Analysis

2005-05-16
2005-01-2502
It is considered that improper usage of rubber bushes and weak dynamic characteristics of chassis and body structures yield interior road noise problems. This paper describes systematic processes for road noise improvement along with measurement and analysis process. Firstly, the noise sources are identified by using a source decomposition method. Secondly, the main noise paths are identified by using a noise path analysis (NPA) method. Thirdly, the design modification of body panels is suggested for road noise reduction by using a panel contribution analysis. Finally the method is validated by applying to road noise improvement process for a new vehicle.
Technical Paper

Development of the Rig and Hardware-in-the-Loop Test Bench for Evaluating Steering Performance

2020-04-14
2020-01-0647
The development of vehicles faces changes in many future flows. The vehicle’s power transfer systems are being changed from conventional types to Hybrid, Electric and Hydrogen vehicles. At this moment, the technology of EPS (Electric Power Steering) system has been expanding from a simple torque assist system to LKAS(Lane Keeping Assist System), PAP(Park Assist Pilot), ALCAS(Active Lane Change System), ADAS(Advanced Driver Assistance System). A good test bench is necessary for the evaluation of both hardware and control logics of EPS in these complexities of development process. Simultaneous Rig and HILS tests can be performed to check that the steering hardware system can perform to the concept of the development vehicle and develop EPS control logic performances. The hardware performance of the steering system might be evaluated based on measured friction and stiffness, taking into account various driving conditions.
X