Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improvement of Virtual Vehicle Analysis Efficiency with Optimal Modes Selection in Flexible Multi-Body Dynamics

2013-04-08
2013-01-1193
In the analysis for durability or R&H performance with the full vehicle multibody models, the need for component flexibility is increasing along with demand for more precise full vehicle system. The component elastic deformations are usually expressed by modal superposition from component normal mode analysis with finite element model for reducing model size and simulation time. Although the simulation results of MBD analysis are more accurate according to increasing the number of flexible body and modes, the increasing of flexible components makes worse simulation time and convergence in MBD analysis. Especially, in the MBD analysis including a flexible upper body, in substitution for large number degree of freedom FE model such as trimmed body, it should take a few times longer than the case of rigid upper body This paper proposes the methods of reducing computational cost with adequate mode selections without the loss of simulation accuracy in the flexible MBD.
Journal Article

FE Simulation of the Transmission Loss Performance of Vehicle Acoustic Components at Low and Medium Frequencies

2014-06-30
2014-01-2081
The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment.
Technical Paper

Appropriate Damping Loss Factor of Vehicle Interior Cavity for Valid Application of Statistical Energy Analysis

2020-09-30
2020-01-1524
It is known that SEA is a rapid and simple methodology for analyzing complex vibroacoustic systems. However, the SEA principle is not always valid and one has to be careful about the physical conditions at which the SEA principle is acceptable. In this study, the appropriate damping loss factor of the vehicle interior cavity is studied in the viewpoint of the modal overlap factor of the cavity and the decay per mean free path (DMFP) of the cavity. Virtual SEA tests are performed with an FE model combination, which is suggested by a previous study of Stelzer et al. for the simulation of the sound transmission loss (STL) of vehicle panel structure. The FE model combination is consisting of the body in white (BIW), an acoustical-excited hemisphere-shaped exterior cavity, and the interior cavity. It is found that the DMFP of the interior cavity is appropriate between 0.5 ~ 1 dB for applying SEA principle.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Journal Article

The Prediction of Fuel Sloshing Noise Based on Fluid-Structure Interaction Analysis

2011-05-17
2011-01-1695
Fuel sloshing noise is involved with flow motion inside fuel tanks as well as structural characteristics of vehicles. Therefore it is necessary to introduce Fluid-Structure Interaction (FSI) analysis to predict sloshing noise phenomena more accurately. Purposes of this paper are to verify the reliability of the FSI method and suggest new CAE analysis processes to predict fuel sloshing noise. The vibration of floor panels induced by sloshing impact is evaluated through FSI analysis. A series of tests is carried out to validate simulation results. The numerical optimization of parameters is also carried out to reduce computation time. In addition, effects of sloshing noise factors are discussed based on simulation and test results. Lastly, a method to predict fuel sloshing noise by exerting sloshing load on a vehicle is suggested.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Journal Article

Study of Optimizing Sliding Door Efforts and Package Layout

2017-03-28
2017-01-1302
A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Model-Based Brake Disc Temperature Prediction on High Speed Testing Mode and Circuit

2020-04-14
2020-01-0214
A brake is a mechanical device that inhibits the motion by absorbing energy from a moving system. It is used for slowing or stopping a moving vehicle, wheel, axle, or to prevent its motion, most often accomplished by friction energy. Commonly, most brakes use friction between two surfaces pressed together to convert the kinetic energy of the moving object into heat, though other methods of energy conversion may be employed. If braking is repeated or sustained in high load or high-speed conditions, the motion will be unstable and can lead to a loss of stopping power because the disc capability for braking is not enough. These phenomena are generally defined as brake fading. Brake fade is caused by an overheating brake system. This paper describes the thermal modeling and process to predict the disk temperature under a condition which causes the fade characteristics.
Technical Paper

An Experimental and Computational Study of Flow Characteristics in Exhaust Manifold and CCC (Close-Coupled Catalyst)

1998-02-23
980128
A combined experimental and computational study of 3-D unsteady compressible flow in exhaust manifold and CCC system was performed to understand the flow characteristics and to improve the flow distribution of pulsating exhaust gases within monolith. An experimental study was carried out to measure the velocity distribution in production exhaust manifold and CCC under engine operating conditions using LDV (Laser Doppler Velocimetry) system. Velocity characteristics were measured at planes 25 mm away from the front surface of first monolith and between two monolithic bricks. To provide boundary conditions for the computational study, velocity fields according to crank angle were also measured at the entrance of exhaust manifold. The comparisons of exhaust gas flow patterns in the junction and mixing pipe between experimental and computational results were made.
Technical Paper

Two-Staged Modeling of Alternator

2007-08-05
2007-01-3471
The alternator provides power to vehicle electrical loads with the battery, and its maximum current depends on various factors such as electrical load, engine speed, thermal condition, and other variables. Above all, thermal effects make alternator simulations more complicated. For example statically similar conditions may show different results according to the temperature variation for each alternator operation. This paper proposes a two-stage statistically-based model structure which separates dynamic thermal effects from steady state performance. The method was validated by experiments and shows good predictive performance, suitable for use in test reduction.
Technical Paper

Partial Elasto-Hydrodynamic Lubrication Analysis for Cylindrical Conformal Contact Model Considering Effect of Surface Wave

2007-08-05
2007-01-3533
Numerous machine elements are operated in mixed lubrication regime where is governed by a combination of boundary and fluid film effects. The direct contact between two surfaces reduces a machines life by increasing local pressure. In order to estimate machine's life exactly, the effect of asperity contact should be considered in the lubrication model. In this study, new 3-dimensional partial elasto-hydrodynamic lubrication (PEHL) algorithm is developed. The algorithm contains the procedures to find out solid contact regions within the lubricated regime and to calculate both the pressure by fluid film and the contact pressure between the asperities of the solids. Using the algorithm, we conducted the PEHL analysis for the contact between the rotating shaft and the inside of pinion gear. To investigate the effect of surface topology two different surfaces with sinusoidal profile are used. Both film thickness and pressure are calculated successfully through the PEHL algorithm.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

Characteristics of the Luxury Sound Quality of a Premium Class Passenger Car

2009-05-19
2009-01-2183
Luxury sound is one of the most important sound qualities in a premium passenger car. Previous work has shown that, because of the effects of many different interior sounds, it is difficult to evaluate the luxury sound objectively by using only the A-weighted sound pressure level. In this paper, the characteristics of such sound were first investigated by a systematic approach and a new objective evaluation method for luxury sound-the luxury sound quality index--which was developed by the systematic combination of the seven major interior sound quality indexes based on path analysis. The seven major sounds inside a passenger car were selected by a basic investigation evaluated by the members of a luxury automotive club. Seven major interior sound quality indexes were developed by using sound metrics, which are the psychoacoustic parameters, and the multiple regression method used for the modeling of the correlation between objective and subjective evaluation.
Technical Paper

A Study on the Optimization of Body Structure for Rattle Noise by Exciting Woofer Speakers

2009-05-19
2009-01-2110
With the recent development of technologies for interpreting vibration and noise of vehicles, it has become possible for carmakers to reduce idle vibration and driving noise in the phase of preceding development. Thus, the issue of noise generation is drawing keen attention from production of prototype car through mass-production development. J. D. Power has surveyed the levels of customer satisfaction with all vehicles sold in the U.S. market and released the Initial Quality Study (IQS) index. As a growing number of emotional quality-related items are added to the IQS evaluation index, it is necessary to secure a sufficiently high quality level of low-frequency speaker sound against rattle noise. It is required to make a preceding review on the package tray panel, which is located at the bottom of the rear glass where the woofer speakers of a passenger sedan are installed, the door module panel in which the door speakers are built.
Technical Paper

Fatigue Life Estimation of Suspension Components using Statistical Method

2009-04-20
2009-01-0080
Depending on the scatter of material properties, geometrical shapes and load conditions, the fatigue life of mechanical components has wide range of scatter although they were tested under same conditions. This scatter is the main reason of different results between observed and predicted fatigue life. This study shows how to estimate the fatigue life distribution by analysis. Dominant factors for fatigue life distributions and their scatter could be obtained by comparing the analysis results and fatigue test results. Applying the scatter of these factors to fatigue analysis, it was possible to predict fatigue life distributions. This will improve the reliability of fatigue life estimation, therefore a more robust and reliable component design is possible.
Technical Paper

Development of CAE Methodology for Rollover Sensing Algorithm

2009-04-20
2009-01-0828
The Rollover CAE model is developed for Rollover sensing algorithm in this paper. By using suggested CAE model, it is possible to make sensing data of rollover test matrix and these data can be used for calibration of rollover sensing algorithm. Developed vehicle model consists of three parts: a vehicle parts, an occupant parts and a ground boundary conditions. The vehicle parts include detailed suspension model and FE structure model. The occupant parts include ATD (anthropomorphic test device) male dummy and restraint systems: Curtain Airbag and Seat-Belt. We find analytical value of the suspension model through correlation with vehicle drop test, simulate this model under the conditions of untripped (Embankment, Corkscrew) and tripped (Curb-Trip, Soil-Trip) rollover scenarios. Comparison of the simulation and experimental data shows that the simulation results of suggested CAE model can be substituted for the experimental ones in calibration of rollover sensing algorithm.
X