Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improvement of Virtual Vehicle Analysis Efficiency with Optimal Modes Selection in Flexible Multi-Body Dynamics

2013-04-08
2013-01-1193
In the analysis for durability or R&H performance with the full vehicle multibody models, the need for component flexibility is increasing along with demand for more precise full vehicle system. The component elastic deformations are usually expressed by modal superposition from component normal mode analysis with finite element model for reducing model size and simulation time. Although the simulation results of MBD analysis are more accurate according to increasing the number of flexible body and modes, the increasing of flexible components makes worse simulation time and convergence in MBD analysis. Especially, in the MBD analysis including a flexible upper body, in substitution for large number degree of freedom FE model such as trimmed body, it should take a few times longer than the case of rigid upper body This paper proposes the methods of reducing computational cost with adequate mode selections without the loss of simulation accuracy in the flexible MBD.
Journal Article

Evaluation of Trim Absorption to Exterior Dynamic and Acoustic Excitations Using a Hybrid Physical-Modal Approach

2014-06-30
2014-01-2080
The NVH study of trimmed vehicle body is essential in improving the passenger comfort and optimizing the vehicle weight. Efficient modal finite-element approaches are widely used in the automotive industry for investigating the frequency response of large vibro-acoustic systems involving a body structure coupled to an acoustic cavity. In order to accurately account for the localized and frequency-dependant damping mechanism of the trim components, a direct physical approach is however preferred. Thus, a hybrid modal-physical approach combines both efficiency and accuracy for large trimmed body analysis. Dynamic loads and exterior acoustic loads can then be applied on the trimmed body model in order to evaluate the transfer functions between these loads and the acoustic response in the car compartment.
Journal Article

FE Simulation of the Transmission Loss Performance of Vehicle Acoustic Components at Low and Medium Frequencies

2014-06-30
2014-01-2081
The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
Journal Article

Development of Noise Propensity Index (NPI) for Robust Brake Friction

2017-09-17
2017-01-2529
A semi-empirical index to evaluate the noise propensity of brake friction materials is introduced. The noise propensity index (NPI) is based on the ratio of surface and matrix stiffness of the friction material, fraction of high-pressure contact plateaus on the sliding surface, and standard deviation of the surface stiffness of the friction material that affect the amplitude and frequency of the stick-slip oscillation. The correlation between noise occurrence and NPI was examined using various brake linings for commercial vehicles. The results obtained from reduced-scale noise dynamometer and vehicle tests indicated that NPI is well correlated with noise propensity. The analysis of the stick-slip profiles also indicated that the surface property affects the amplitude of friction oscillation, while the mechanical property of the friction material influences the propagation of friction oscillation after the onset of vibration.
Technical Paper

A Study on Optimization of the Cross-Section of Door Impact Beam for Weight Reduction

2020-04-14
2020-01-0631
This paper focuses on the optimization of the cross-section of a panel type impact door beam. The key parameters of the cross-section of the beam were artificially changed by using a geometry morphing tool FCM (Fast Concept Modeler), which is plugged in to CATIA. Then, the metamodel of FE (Finite Element) analysis results was created and optimized using LS-OPT. The ANOVA (Analysis of Variance) analysis of results was carried out to find the factor of weight reduction. Finally, a new cross section concept was proposed to overcome the limitation of old structure. The optimization was carried out for the beam with the final cross-section to have 10 % or more reduction in total weight.
Journal Article

The Prediction of Fuel Sloshing Noise Based on Fluid-Structure Interaction Analysis

2011-05-17
2011-01-1695
Fuel sloshing noise is involved with flow motion inside fuel tanks as well as structural characteristics of vehicles. Therefore it is necessary to introduce Fluid-Structure Interaction (FSI) analysis to predict sloshing noise phenomena more accurately. Purposes of this paper are to verify the reliability of the FSI method and suggest new CAE analysis processes to predict fuel sloshing noise. The vibration of floor panels induced by sloshing impact is evaluated through FSI analysis. A series of tests is carried out to validate simulation results. The numerical optimization of parameters is also carried out to reduce computation time. In addition, effects of sloshing noise factors are discussed based on simulation and test results. Lastly, a method to predict fuel sloshing noise by exerting sloshing load on a vehicle is suggested.
Journal Article

Research for Brake Creep Groan Noise with Dynamometer

2012-09-17
2012-01-1824
This paper deals with creep groan noise in vehicles which is a low frequency vibration problem at 20∼500Hz that appears in low brake pressures and extremely low speed especially in automatic transmission car, where there is a transition from static to dynamic condition. The vibration causing the noise is commonly thought to result from friction force variation between brake disc and pad in stick-slip phenomena. Simulation results are confirmed through dynamometer testing. Then presented noise contribution factor analysis by experimental approach between chassis components.
Journal Article

Study of Optimizing Sliding Door Efforts and Package Layout

2017-03-28
2017-01-1302
A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Journal Article

Measurement and Modeling of Perceived Gear Shift Quality for Automatic Transmission Vehicles

2014-05-09
2014-01-9125
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

2007-05-15
2007-01-2251
In this research, the influence of tire size and shape on sound radiation in the mid-frequency region was studied. First, the relationship between the structural wave propagation characteristics of a tire excited at one point and its sound radiation was identified by using FE and BE analyses. Then, by using that relationship, the effect of modifying a tire's aspect ratio, width and wheel diameter on its sound radiation between 300 Hz and 800 Hz was investigated. Finally, an optimization of the sound radiation was performed by modification of the tire structure and shape. It was found that most of a tire's structural vibration does not contribute to sound radiation. In particular, the effective radiation was found to occur at the frequencies where low wave number components of the longitudinal wave and the flexural wave first appear.
Technical Paper

Modeling of Door Slam Noise Index by using Sound Quality Metric

2007-05-15
2007-01-2394
Door slam noise is very important sound, because Door Slam noise gives a big effect in high-class feeling of vehicle and brand identity. But it is very difficult to analyze door slam noise by traditional analysis and overall sound level. Moreover, the short occurrence time of Door Slam noise makes the analysis more difficult. In this paper, we used the latest developed sound quality methods for analyzing Door Slam noise. And we had performed jury test for luxury vehicles. After that we had carried out correlation analysis between objective analysis and subjective test. Finally, we could suggest Door Slam noise Index by linear regression analysis.
Technical Paper

Two-Staged Modeling of Alternator

2007-08-05
2007-01-3471
The alternator provides power to vehicle electrical loads with the battery, and its maximum current depends on various factors such as electrical load, engine speed, thermal condition, and other variables. Above all, thermal effects make alternator simulations more complicated. For example statically similar conditions may show different results according to the temperature variation for each alternator operation. This paper proposes a two-stage statistically-based model structure which separates dynamic thermal effects from steady state performance. The method was validated by experiments and shows good predictive performance, suitable for use in test reduction.
Technical Paper

Partial Elasto-Hydrodynamic Lubrication Analysis for Cylindrical Conformal Contact Model Considering Effect of Surface Wave

2007-08-05
2007-01-3533
Numerous machine elements are operated in mixed lubrication regime where is governed by a combination of boundary and fluid film effects. The direct contact between two surfaces reduces a machines life by increasing local pressure. In order to estimate machine's life exactly, the effect of asperity contact should be considered in the lubrication model. In this study, new 3-dimensional partial elasto-hydrodynamic lubrication (PEHL) algorithm is developed. The algorithm contains the procedures to find out solid contact regions within the lubricated regime and to calculate both the pressure by fluid film and the contact pressure between the asperities of the solids. Using the algorithm, we conducted the PEHL analysis for the contact between the rotating shaft and the inside of pinion gear. To investigate the effect of surface topology two different surfaces with sinusoidal profile are used. Both film thickness and pressure are calculated successfully through the PEHL algorithm.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

Touch Feel and Appearance Characteristics of Automotive Door Armrest Materials

2007-04-16
2007-01-1217
This paper presents results of a five phase study conducted to evaluate touch feel and appearance of door armrest materials. Seven different production door armrests with different material characteristics such as softness, smoothness, compressibility, texture, etc. were evaluated. In the first phase, the subjects seated in a vehicle buck in their preferred seating position with the armrests adjusted at their preferred heights, provided ratings on a number of touch feel and appearance of the door armrest materials using 5-point semantic differential scales. In the second phase, the armrests were presented to each subject in all possible pairs and they were asked to select preferred armrest material in each pair.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
X