Refine Your Search

Topic

Author

Search Results

Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Journal Article

Development of Fatigue Durability Analysis Techniques for Engine Piston using CAE

2009-04-20
2009-01-0820
A piston in a diesel engine is subject to the high pressure and the high thermal load. The high structural reliability is required to the piston in the automotive diesel engine and it is important to confirm the design parameters of piston in initial design stage. There are lots of research works proposing new geometries, materials and manufacturing techniques for engine pistons. But, the failures of piston occur frequently in development stage. Failure mechanisms are mainly fatigue related. This paper presents failure mechanisms of the high cycle fatigue and low cycle thermal fatigue cracks which occur on the piston during durability test using engine dynamometer. In this study, FE analysis was carried out to investigate the root cause of piston failure. The analysis includes the FE model of the piston moving system, temperature dependent material properties, mechanical and thermal loadings.
Journal Article

Development of Nano Diamond Polymer Coating on Piston Skirt for Fuel Efficiency

2011-04-12
2011-01-1401
Various polymer-based coatings are applied on piston skirt to reduce friction loss between the piston skirt and cylinder bore which is one of main factors of energy loss in an automotive engine system. These coatings generally consist of polymer binder (PAI) and solid lubricants (graphite or MoS₂) for low friction property. On the other hand, the present study found that PTFE as a solid lubricant and nano diamond as hard particles can be used to improve the low friction and wear resistance simultaneously. In the process of producing coating material, diamond particles pulverized to a nano size tend to agglomerate. To prevent this, silane (silicon coupling agent) treatment was applied. The inorganic functional groups of silane are attached to the nano diamond surface, which keep the diamond particles are apart.
Journal Article

The Role of Copper on the Friction and Wear Performance of Automotive Brake Friction Materials

2011-09-18
2011-01-2367
Copper has been regarded as one of the indispensable ingredients in the brake friction materials since it provides high thermal diffusivity at the sliding interface. However, the recent regulations against environmentally hazardous ingredients limit the use of copper in the commercial friction material and much effort has been made for the alternatives. In this work, the role of the cuprous ingredients such as copper fiber, copper powder, cupric oxide (CuO), and copper sulfide (CuS) are studied using the friction materials based on commercial formulations. The investigation was performed using a full inertial brake dynamometer and 1/5 scale dynamometer for brake performance and wear test. Results showed that the cuprous ingredients played a crucial role in maintaining the stable friction film at the friction interface, resulting in improved friction stability and reduced aggressiveness against counter disk.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Noble Materials for Thin-Walled Bumper Fascia with Enhanced Processibility and Dimensional Stability

1998-02-01
980105
A new noble material for automotive bumper fascia has been developed by compounding of ethylene-propylene block copolymers with ethylene-α-olefin copolymers and some additives. Also mineral fillers are added, if necessary. This material is suitable for injection molding of large parts including automotive bumper fascia. By using selected rubbers which have proper melt viscosity, molecular weight, and co-monomer content, and adding modified polymer containing polar group, it has enhanced processibility and paintability maintaining general properties such as tensile strength, impact strength at low temperature, and thermal and UV stability. The remarkable characteristics of this material is good processibility compared to the conventional TPOs. This material has especially high melt flow index(20∼30g/10min at 230°C) and stable flow behavior at the processing conditions.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

A Study on the Influence of Plastic Intake Manifold on the Performance and NVH of In-line 4 Cylinder Gasoline Engine

1998-02-01
980728
The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. Moreover, the use of plastic for intake manifold is regarded as a key for further development of so called an “intake modular system”. As a secondary effect, the engine power can be increased with the help of improved interior surface roughness and lowered air temperature. With regard to NVH, however, plastic intake manifold is considered somewhat negative since it is less rigid and less dense than aluminum one. In this paper, the mechanism that plastic intake manifold affects the performance and NVH of in-line 4 cylinder gasoline engine is presented. In connection with engine performance, air flow efficiency of not only intake manifold itself but also other components of intake system and also cylinder head is evaluated.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Study of Sealing Mechanism to Prevent Oil Leakage for the Thermoplastic Cylinder Head Cover

2007-04-16
2007-01-0566
Most of car makers nowadays produce Cylinder Head Cover with Thermoplastic to get the benefit of weight and cost reduction. The production of Cylinder Head Cover with Thermoplastic brings a number of benefits such as enhancement in productivity, design freedom, integration with other parts and reduction in weight. However, NVH characteristics, sealing performance issues possibly caused by design of cover and gasket and loss of properties of materials when used for long-term period still remain as critical tasks to be solved. Especially in case of car OEMs strongly insist that we have to meet their severe specifications requirements so as to satisfy their customers' growing demand. Sealing performance is one of the core factors, which require continuous effort and studies to meet the OEM's specifications.
Technical Paper

Fatigue Strength Evaluation for the Leaf Spring of Commercial Vehicle Considering U Bolt Fixing Force

2007-04-16
2007-01-0853
Suspension system of vehicle is very important because it has an effect on ride comfort and safety. And the leaf spring is one of the major parts of commercial vehicle. By that reason it has to be designed to operate under severe condition to ensure enough endurance. But the traditional method for fatigue design needs repeated fatigue tests for each design according to its geometry, material, and operating condition. This means that a lot of time and money is needed for those tests. Thus, in this paper, a fatigue design method for leaf spring based on numerical analysis is proposed. At first, stress analysis is performed to get the stress under operation load or rig tests. And fatigue analysis is performed to get the fatigue life and to ensure the safety of leaf spring. Through this study, design parameters that play vital role in fatigue life of the leaf spring can be found out.
Technical Paper

Development of High Wear Resistant and Durable Coatings for Al Valve Spring Retainer

2007-04-16
2007-01-1748
The use of light-weight materials in automotive engine components has increased in order to achieve better fuel efficiency and engine performance. In this study, Al alloy (AI5056) valve spring retainer can reduce a weight by 63% in comparison to steel and improve the upper limit of engine speed by about 500rpm. The Al valve spring retainer was fabricated by cold forging and coated with hard anodizing, DLC (diamond like coating), cold spray and thermal spray for better wear resistance and durability. We conclude that among these materials the DLC coating improves the wear resistance of Al valve spring retainer and has a sufficient durability after endurance testing.
Technical Paper

Fatigue Life Estimation of Suspension Components using Statistical Method

2009-04-20
2009-01-0080
Depending on the scatter of material properties, geometrical shapes and load conditions, the fatigue life of mechanical components has wide range of scatter although they were tested under same conditions. This scatter is the main reason of different results between observed and predicted fatigue life. This study shows how to estimate the fatigue life distribution by analysis. Dominant factors for fatigue life distributions and their scatter could be obtained by comparing the analysis results and fatigue test results. Applying the scatter of these factors to fatigue analysis, it was possible to predict fatigue life distributions. This will improve the reliability of fatigue life estimation, therefore a more robust and reliable component design is possible.
Technical Paper

Springback Elimination in Structural Components by Means of Electromagnetic Forming

2009-04-20
2009-01-0803
Looking for car weight reduction related to the use of High Strength Steels (HSS) for manufacturing body-in-white components, an innovative application of the high velocity forming techniques has been developed: the Electro Magnetic (EM) calibration and elimination of the spring-back effect (sidewall curl) of High Strength Steel U-channels. Within this paper the initial tests on L and U-shaped parts will be presented. Being the mechanical stiffness the main parameter for improving the coil endurance, the prediction of the coil strains under EM forces is a basic issue, which has been addressed within this study.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

High Temperature Mg Alloys for Sand and Permanent Mold Casting Applications

2004-03-08
2004-01-0656
The need to reduce weight of large and heavy components used by the automotive and aerospace industries such as engine block, cylinder head cover and helicopter gearbox housing has led to the development of new Mg gravity casting alloys that provide adequate properties and cost effective solution. The new Mg gravity casting alloys are designed for high stressed components that operate at a temperature up to 300°C. These new alloys exhibit excellent mechanical properties and creep resistance in T-6 conditions. The present paper aims at introducing three new Mg gravity casting alloys designated MRI 201S, MRI 202S and MRI 203S, which were recently developed by the Magnesium Research Institute of DSM and VW. Apart from the excellent high temperature performance of these alloys, they provide adequate castability and dimension stability along with good weldability and corrosion resistance.
Technical Paper

Evaluation of an UV-Analyzer for the Simultaneous NO and NO2 Vehicle Emission Measurement

2004-06-08
2004-01-1830
For the measurement of NO and NO2 the CLD-analyzer (chemiluminescense detector) has been used for more than twenty-five years. The disadvantage of the CLD is that NO can be measured only. To obtain total NOX (NO+NO2) the exhaust gas sample has to flow through a catalytic converter, which reduces NO2 to NO. The converter has a efficiency between 90 and 100%. For precise NO and NO2 values it is an advantage to analyze NO and NO2 directly. This paper describes a new UV NOX-analyzer for the simultaneous measurement of NO and NO2. Two different configurations, for high and low concentrations, eg. CVS-bag analysis are presented. The performance of the analyzers is documented in comparison to the UV-RAS analyzer with converter for NOX [1] and the conventional CLD-analyzer. The benefits of the new analyzer compared to analyzers equipped with a converter are given in detailed test results.
Technical Paper

Development of Accelerated Corrosion Test Mode Considering Environmental Condition

2002-03-04
2002-01-1231
Accelerated simulation of vehicle corrosion in a controlled environment not only involves large chambers for actual vehicle tests, but also requires careful consideration of interactions between various parameters given a short time period within which the test is bounded. A new corrosion durability test mode reproducing various field conditions using salt spray, climatic, sunlight simulation and cold chambers has been developed. Verification of the test mode is carried out using four actual vehicle corrosion tests correlated against used cars of Nort h America and Northern Europe. The process of new corrosion test mode is discussed along with the characteristics of the test chambers.
X