Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
Technical Paper

Turbine Efficiency Estimation for Fault Detection Application

2010-04-12
2010-01-0568
In nowadays diesel engine, the turbocharger system plays a very important role in the engine functioning and any loss of the turbine efficiency can lead to driveability problems and the increment of emissions. In this paper, a VGT turbocharger fault detection system is proposed. The method is based on a physical model of the turbocharger and includes an estimation of the turbine efficiency by a nonlinear adaptive observer. A sensitivity analysis is provided in order to evaluate the impact of different sensors fault, (drift and bias), used to feed the observer, on the estimation of turbine efficiency error. By the means of this analysis a robust variable threshold is provided in order to reduce false detection alarm. Simulation results, based on co-simulation professional platform (AMEsim© and Simulink©), are provided to validate the strategy.
Technical Paper

Pre-Turbocharger Catalyst - Fast catalyst light-off evaluation

2005-05-11
2005-01-2142
Further tightened emission legislation and new engine technologies increase the requirements for the exhaust after-treatment system of modern diesel passenger cars. Especially the increasing raw emissions of HC and CO as well as the low temperature of the exhaust gas for a long period during cold start of the New European Driving Cycle (NEDC) require additional efforts in the design of the oxidation catalyst system [1]. A highly efficient micro catalyst, which is mounted in front of a turbocharger, can help to treat efficiently these high HC and CO emissions. Due to the higher temperature level in front of the turbine and the significantly increased mass and heat transfer by turbulent flow, efficiency especially during cold start is highly increased. However the packaging constraints are more critical in this area due to heat considerations and also to maintain engine performance.
X