Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Review of Recent Literature Investigating the Measurement of Automotive Particulate; The Relationship with Environmental Aerosol, Air Quality and Health Effects

1998-10-19
982602
Levels of ambient particulate matter have become the focus of increased attention over recent years as a result of studies suggesting an association between exposure and adverse health effects. Whilst research is continuing in many areas to identify a biological mechanism whereby this association can be explained, as yet there are only hypotheses. Causal relationships between observed health effects (i.e. increased hospital admissions, mortality, respiratory or heart problems) and any specific characteristic of the ambient aerosol have yet to be confirmed. Ambient aerosol has a complex chemistry and a wide range of physical properties, most of which undergo constant modification or transformation within the atmosphere. The particles in this aerosol may have originated either from natural or anthropogenic sources and may be either primary emissions (i.e. directly emitted to the atmosphere as particles) or secondary particles - formed by reaction of gas phase components.
Technical Paper

SCR for Passenger Car: the Ammonia-Storage Issue on a Fe-ZSM5 Catalyst

2009-06-15
2009-01-1929
A comprehensive experimental approach has been developed for a Fe-ZSM5 micro-porous catalyst, through a collaborative project between IFP, PSA Peugeot-Citroën and the French Environment and Energy Management Agency (ADEME). Tests have first been conducted on a synthetic gas bench and yielded estimated values for the amount of NH3 stored on a catalyst sample. These data have further been compared to those obtained from an engine test bench, in running conditions representative of the entire operating range of the engine. 15 operating points have been chosen, considering the air mass flow and the exhaust temperature, and tested with different NH3/NOx ratios. Steady-state as well as transient conditions have been studied, showing the influence of three main parameters on the reductant storage characteristics: exhaust temperature, NO2/NOx ratio, and air mass flow.
Technical Paper

A Study of Mixture Formation in Direct Injection Diesel Like Conditions Using Quantitative Fuel Concentration Visualizations in a Gaseous Fuel Jet

2002-05-06
2002-01-1632
Quantitative fuel concentration visualizations are carried out to study the mixing process between fuel and air in Direct Injection (DI) Diesel like conditions, and generate high quality data for the validation of mixing models. In order to avoid the particular complication connected with fuel droplets, a gaseous fuel jet is investigated. Measurements are performed in a high-pressure chamber that can provide conditions similar to those in a diesel engine. A gas injection system able to perform injections in a high-pressure chamber with a good control of the boundary conditions is chosen and characterized. Mass flow rates typical of DI Diesel injection are reproduced. A Laser Induced Fluorescence technique requiring the mixing at high pressure of the fluorescent tracer, biacetyl, with the gaseous fuel, methane, is developed. This experimental technique is able to provide quantitative measurement of fuel concentration in high-pressure jets.
Technical Paper

Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion

2001-09-24
2001-01-3684
Soot models applied to Diesel combustion can be grouped into two classes, one based on the flamelet concept and the other based on the homogeneous reactor concept. The first assumes that the laminar diffusion flame structure of the reaction zone, in the mixture fraction space, is preserved while convected and strained by the turbulent flow. The second assumes that the properties of the reaction zone are locally homogeneous. Thus the aerodynamic and chemical reaction interactions are modeled with opposing assumptions: the first assumes fast chemistry, the second fast mixing. In this work, we first compare results obtained with a flamelet library approach to those with a homogeneous reactor approach. Recognizing that both types of models apply in different regions of Diesel combustion, we then propose a new approach for soot modeling in which they are coupled.
Technical Paper

A Study of Combustion Structure and Implications on Post-Oxidation Under Homogeneous and Stratified Operation in a DISI Engine

2006-04-03
2006-01-1262
An experimental investigation into the structure and flame propagation characteristics of stratified and homogeneous combustion has been performed in an optically-accessible, direct-injection spark ignition (DISI) engine using OH planar laser-induced fluorescence (PLIF) imaging. Homogeneous and stratified operation was achieved by employing either early or late injection timing strategies during the intake or compression stroke respectively. Planar LIF OH images obtained revealed that for stratified operation, the 3D structure of the combustion zone is highly inhomogeneous and is predominantly due to high fuel concentration gradients which are formed as a result of local fuel mixture stratification. The images reveal a combustion structure which suggests that the flame propagation pathway is ultimately determined by the presence of these local fuel mixture inhomogeneities.
Technical Paper

Improved Modelling of DI Diesel Engines Using Sub-grid Descriptions of Spray and Combustion

2003-03-03
2003-01-0008
Three dimensional CFD tools are commonly used to simulate spray injection and combustion in DI Diesel engines. However typical computations are strongly mesh dependent. By now it is not possible to enhance grid resolution since it would violate the underlying assumptions for the Lagrangian liquid phase description. Besides, a full Eulerian approach with an adapted mesh is not practical at the moment mainly because of prohibitive computer requirements. Based on the Lagrangian-Eulerian approach, new approaches have been developed: the Coupled Lagrangian-Eulerian (CLE) model for the two-way coupling between the spray and the air flow and a new combustion model (CFM3Z) which allows a description of the fuel-oxidizer sub-grid mixing. The previously introduced CLE model consists in retaining vapor and momentum along parcel trajectories as long as the mesh is insufficient to resolve the steep gradients created by the spray.
Technical Paper

The Effect of Fuel Sulphur Content on the Exhaust Emissions from a Lean Burn Gasoline Direct Injection Vehicle Marketed in Europe

1999-10-25
1999-01-3585
The effect of fuel sulphur on emissions from a lean-burn G-DI passenger car homologated according to German D3 specifications was investigated over the European drive cycles. In addition some tests over US Federal cycles were conducted. No statistically significant deterioration in tailpipe emissions was detected with the leanburn G-DI technology using a selective reduction type de-NOx catalyst at fuel sulphur levels from 30 to 300 mg/kg. The emission response to fuel sulphur level was essentially flat, and the sulphur effect was less than that seen in the EPEFE fleet. Tests were conducted applying a rigorous test protocol including four repeats with each fuel and a desulphation procedure between fuel changes. Approximately 15-20% improvement in fuel economy over comparable MPI cars was predicted based on the CO2 results from the current programme and German type approval data. Increased particulate mass emissions were observed, compared with typical MPI cars.
X