Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2007-07-09
2007-01-3252
During the last years extensive work has been done to design and develop the Closed-Loop Air Revitalization System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and to increase the safety of the crew by reducing dependence on re-supply flights. The design is adapted to the interfaces of the new base lined Russian MLM module as possible location for a future installation of ARES. Due to the lack of orbital support equipment and interfaces to a waste water bus, to a feed water supply line and due to the availability of only one single vent line it was necessary to make the ARES process water loop as independent as possible from the host vehicle. Another optimization effort was to match the CO2 desorption profile with the available hydrogen flow to achieve a sufficient water recovery performance, while meeting all related safety requirements, minimizing complexity and improving reliability.
Technical Paper

Lessons Learned from the METOP Thermal Analysis and Testing

2003-07-07
2003-01-2461
Metop (METeorological OPerational satellite) is a series of three satellites designed to monitor the climate and improve weather forecasting. This paper describes the thermal analysis, thermal testing performed, and relevant lessons learned. For the thermal analysis campaigns it focuses on: exchange and correlation of reduced thermal mathematical models established in various software formats sizes and content of the models, in particular automatic generation of reduced models from the detailed models uncertainties definitions of thermal interfaces The lessons learned from the thermal testing campaigns apply to: selection of test environment, using solar simulation and/or infra-red techniques selection of test cases based on thermal design driving parameters and/or test chamber capabilities adequate instrumentation (i.e. thermocouples, test heaters) for all critical components (un)expected events e.g.
Technical Paper

Design Status of ARES for Accomodation on the ISS

2003-07-07
2003-01-2623
During the last years extensive work has been done to design and develop the Closed Loop Air Revitalisation System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand. The current activities concentrate on the development of a full-scale demonstrator with ‘engineering model’ quality. The demonstrator will include the functions of CO2 concentration, CO2 reduction and oxygen generation. All components will fit into one ISPR. The design will minimize the number of external interfaces in order to achieve a high degree of independence with respect to accommodation on the ISS. The paper describes the current development status and touches on critical technology tests for performance optimization.
Technical Paper

ISS Crew Refrigerator Freezer Rack - Comparing EcosimPro and ESATAN Modeling

2002-07-15
2002-01-2447
The Crew Refrigerator/Freezer Racks (RFR) are being developed and built at Astrium Friedrichshafen under ESA contract. The RFR will provide conditioned storage volume for astronaut food during transport in the MPLM and on board the ISS. To support the design of the RFR a thermal model has been established at Astrium in the early project phase using the ESATAN software which is the ESA standard thermal analysis tool. This model has been extended to allow full operational simulation of the RFR during a typical mission scenario. For demonstrating the capabilities of EcosimPro, a state of the art tool to address Environmental Control and Life Support analysis, the same model is built up with EcosimPro. The results are validated by comparing them to those from the ESATAN simulation.
Technical Paper

LHP Modeling With EcosimPro and Experimental Validation

2005-07-11
2005-01-2934
Loop Heat Pipes (LHPs) are two phase heat transport devices where the fluid circulation is achieved by capillary forces. Because of their high heat transport capability, robustness, reliability and compactness, they are becoming standard thermal control devices in several applications in space, aeronautics and electronics industry. Several mathematical models have been developed to predict the behavior of these devices. However, due to the complexity of the two-phase phenomena involved in LHPs, current models cannot simulate several performance characteristics. This paper presents an LHP mathematical model developed using the software simulation tool EcosimPro. The results of the mathematical model have been compared with the hardware test data for code validation. Results in both, steady and transient conditions, are presented and discussed.
X