Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

2016-09-27
2016-01-8082
The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Technical Paper

Automotive Interprofessional Projects (IPRO®) Program at Illinois Institute of Technology

2005-09-07
2005-01-3465
The Illinois Institute of Technology (IIT) Interprofessional Projects (IPRO®) Program engages multidisciplinary teams of students in semester-long projects, with a total of thirty to thirty-five different projects offered every semester. This program greatly contributes to IIT's signature undergraduate education experience, with each interprofessional course delivering a team-oriented, project-based requirement within the undergraduate curriculum. Among its many benefits, each interprofessional course offers students the opportunity to integrate the education and research environment of the university to tackle real-world problems. In the process, students get the chance to develop and emerge from the experience with maturity, confidence, and valuable professional skills that are highly sought after in the workplace, simultaneously preparing them for the realities of today's global, highly-competitive environment [1].
Technical Paper

Constant Power Load Characteristics in Multi-Converter Automotive Power Electronic Intensive Systems

2005-09-07
2005-01-3451
Intensifying demands for higher fuel economy from one hand and environmental concerns from the other are driving advanced automotive power systems to be more electric. As a result, automotive electrical systems with higher capacity and more complexity are needed to cope with this expanding electrification trend. As different electrical applications and loads are being introduced in automobiles, multi-converter intensive power electronic systems are emerging as the next generation of the advanced automotive electrical systems. In fact, power electronic converters and electric motor drives are inevitable parts of more electric automotive power systems. When power electronic converters and electric motor drives are tightly regulated to improve system performance and efficiency, they present negative impedance characteristics of constant power loads to the entire automotive electrical system. This destabilizing effect may cause system instability.
Technical Paper

Managing System Performance Data Acquisition Process for Duration and Quality Assurance of Input Data

2015-04-14
2015-01-0486
Performance data offers a powerful tool for system condition assessment and health monitoring. In most applications, a host of various types of sensors is employed and data on key parameters (describing the system performance) is compiled for further analysis and evaluation. In ensuring the adequacy of the data acquisition process, two important questions arise: (1) is the complied data robust and reasonable in representing the system parameters; and (2) is the duration of data acquisition adequate to capture a favorable percentage (say for example 90%) of the critical values of a given system parameter? The issue related to the robustness and reasonableness of data can be addressed through known values for key parameters of the system. This is the information that is not often available. And as such, methods based on trends in a given system parameter, expected norms, the parameter's relation with other known parameters, and simulations can be used to assure the quality of the data.
X