Refine Your Search

Topic

Author

Search Results

Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Technical Paper

Analysis of In-Cylinder Flow and Cycle-to-Cycle Flow Variations in a Small Spark-Ignition Engine at Different Throttle Openings

2020-04-14
2020-01-0793
Flow variations from one cycle to the next significantly influence the mixture formation and combustion processes in engines. Therefore, it is important to understand the fluid motion and its cycle-to-cycle variations (CCVs) inside the engine cylinder. Researchers have generally investigated the cycle-to-cycle flow variations in moderate- to large-sized engines. In the present work, we have performed the flow measurement and analysis in a small spark-ignition engine. Experiments are conducted in an optically accessible, single-cylinder, port-fuel-injection engine with displacement volume of 110 cm3 at different throttle openings (i.e. 50% and WOT) using particle image velocimetry. Images are captured at different crank angle positions during both intake and compression strokes over a tumble measurement plane, bisecting the intake and exhaust valves and passing through the cylinder axis.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

Analysis of Combustion Noise in a Small Common-Rail Direct-Injection Diesel Engine at Different Engine Operating Conditions

2020-04-14
2020-01-0419
Stringent emission regulations on one hand and increasing demand for better fuel economy along with lower noise levels on the other hand require adoption of advanced common-rail direct-injection technologies in diesel engines. In the present work, a small 0.9-l, naturally aspirated, two-cylinder, common-rail direct-injection diesel engine is used for the analysis of combustion noise at different engine operating conditions. Experiments are conducted at different loads and engine speeds, incorporating both single and multiple (i.e. pilot and main) injections along with different injection timings. In the case of multiple injections, the influence of pilot injection quantity is also evaluated on the combustion noise while maintaining the same load. In-cylinder pressure was recorded with the resolution of 0.1 crank angle degree, and it was used for the quantitative analysis of noise assessed from the resulting cylinder pressure spectra, and sound pressure level.
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
Technical Paper

Eco-Friendly Brake-Pads Using Ferritic Stainless-Steel Particles of Varying Sizes: Influence on Performance Properties

2020-10-05
2020-01-1602
Metallic particles in brake-friction materials (FMs) play a vital role in improving mainly strength, friction level, thermal conductivity and hence resistance to fade during braking operations. Although Copper was the most efficient and popular metallic ingredient in FMs, it is being phased out because of its proven threat to the aquatic life in the form of wear debris. Hardly any successful efforts are reported in open literature barring few on in the authors’ laboratory. It is well-known that the size and shape of particles affect the performance of composites apart from their type, concentration, etc. In this paper, Ferritic stainless steel (SS 434) particles were selected as a theme ingredient in two forms, first particulate (SSP) with two sizes, larger (30-45 micron) and smaller (10-20 micron) and also in the form of swarf. The aim was to investigate the size and shape effect of these ingredients when used to manufacture the brake-pads on the performance properties.
Technical Paper

Controlling the Performance of Copper-Free Brake-Pads by Varying Size of Graphite Particles

2020-10-05
2020-01-1604
Graphite plays a crucial role in friction materials, since it has good thermal conductivity, lubricity and act as a friction modifier. The right type, amount, shape, and size of the particles control the performance of the brake-pads. The theme of the study was investigating the influence of size of graphite particles (having all other specifications identical) on performance properties of brake-pads containing graphite particles in the average size of 60 μm, 120 μm, 200 μm and 400 μm. Physical, mechanical and chemical characterization of the developed brake-pads was done. The tribological performance was studied using a full- scale inertia brake dynamometer following a Japanese automobile testing standard (JASO C406). Tribo-performance in terms of fade resistance, friction stability and wear resistance were observed best for smaller graphite particles. It was concluded that smaller size serves best for achieving best performance properties barring compressibility.
Technical Paper

Comparative Studies on the Idling Performance of a Three Cylinder Passenger Car Engine Fitted with a Carburettor and a Single Point Electronic Gasoline Fuel Injection System

1997-05-01
971615
Experimental investigations relating to the performance and emission characteristics under idling conditions of a three cylinder passenger car spark ignition engine operating on a conventional carburettor and a developed single point gasoline fuel injection system are described in this paper. The idling performance at different engine speeds was studied by carrying out comprehensive engine testing on a test bed in two phases. In the first phase, experiments were conducted on an engine fitted with a conventional carburettor whilst they were extended to the engine provided with a developed electronic single point fuel injection (SPI) system, whose fuel spray was directed against the direction of air flow. The injection timing of the SPI system was varied from 82 deg. before inlet valve opening (or 98 deg. before top dead center) to 42 deg. after inlet valve opening (or 26 deg. after top dead center).
Technical Paper

Non-Reacting and Reacting Flow Analysis in an Aero-Engine Gas Turbine Combustor Using CFD

2007-04-16
2007-01-0916
A gas turbine combustion system is an embodiment of all complexities that engineering equipment can have. The flow is three dimensional, swirling, turbulent, two phase and reacting. The design and development of combustors, until recent past, was an art than science. If one takes the route of development through experiments, it is quite time consuming and costly. Compared to the other two components viz., compressor and turbine, the combustion system is not yet completely amenable to mathematical analysis. A gas turbine combustor is both geometrically and fluid dynamically quite complex. The major challenge a combustion engineer faces is the space constraint. As the combustion chamber is sandwiched between compressor and turbine there is a limitation on the available space. The critical design aspect is in facing the aerodynamic challenges with minimum pressure drop. Accurate mathematical analysis of such a system is next to impossible.
Technical Paper

Experimental Investigation on the Use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine

2001-03-05
2001-01-0205
A single cylinder, direct injection diesel engine was run on water diesel emulsion at a constant speed of 1500 rpm under variable load conditions. Water to diesel ratio of 0.4 on the mass basis was used. Tests indicated a considerable reduction in smoke and NO levels. This was accompanied by an increase in brake thermal efficiency at high outputs. HC & CO levels, ignition delay and rate of pressure rise went up. The heat release rate in the premixed burn period was higher. When the oxygen concentration in the intake air was enhanced in steps up to 25% along with the use of water diesel emulsion, the brake thermal efficiency was improved and there was a further reduction in the smoke level. HC and CO levels also dropped. NO emission went up due to increased temperature and oxygen availability. An oxygen concentration of 24% by volume was optimal as the NO levels were near about base diesel values.
Technical Paper

Spark Assisted Diesel Operation in a Low Compression Ratio Low Heat Rejection Engine

1992-02-01
920545
In the present work, investigations were carried out on a single cylinder, low compression ratio, spark-assisted low heat rejection D.I diesel engine. An extended electrode spark plug was used. Performance and emission tests on the engine were carried out with diesel fuel at two compression ratios, 10.5 and 12.5. In each case the engine was tested as a normal engine as well as a low heat rejection engine. The test results show that the low compression ratio spark assisted diesel engine operates very smoothly due to the low peak pressure and low rate of pressure rise. The low heat rejection spark assisted diesel engine gave an improved performance and reduced emissions compared to the normal baseline diesel engine.
Technical Paper

A Comparison of Different Low Temperature Combustion Strategies in a Small Single Cylinder Diesel Engine under Low Load Conditions

2017-10-08
2017-01-2363
Advanced low temperature combustion (LTC) modes are most promising to reduce green house gas emissions owing to fuel economy benefits apart from simultaneously reducing oxides of nitrogen (NOx) and particulate matter (PM) emissions from diesel engines. Various LTC strategies have been proposed so far and each of these LTC strategies have their own advantages and limitations interms of precise ignition control, achievable load range and higher unburned emissions. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under different LTC strategies including Homogenous Charge Compression Ignition (HCCI), Premixed Charge Compression Ignition (PCCI) and Reactivity Controlled Compression Ignition (RCCI).
Technical Paper

A Comparison of Conventional and Reactivity Controlled Compression Ignition (RCCI) Combustion Modes in a Small Single Cylinder Air-Cooled Diesel Engine

2017-10-08
2017-01-2365
Reactivity controlled compression ignition (RCCI) is one of the most promising low temperature combustion (LTC) strategies to achieve higher thermal efficiencies along with ultra low oxides of nitrogen (NOx) and particulate matter emissions. Small single cylinder diesel engines of air-cooled type are finding increasing applications in the agriculture pump-set and small utility power generation owing to their lower cost and fuel economy advantages. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under RCCI combustion mode with a newly designed cylinder head to accommodate a high pressure, fully flexible electronically controlled direct diesel fuel injection system, a low pressure gasoline port fuel injection system and an intake air pre heater.
Technical Paper

Tomographic PIV Evaluation of In-Cylinder Flow Evolution and Effect of Engine Speed

2016-04-05
2016-01-0638
In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
Technical Paper

Effect Of Swirl and Tumble on the Stratified Combustion of a DISI Engine - A CFD Study

2011-04-12
2011-01-1214
Of late direct injection engines are replacing carburetted and port injected engines due to their high thermal efficiency and fuel economy. One of the reasons for the increased fuel economy is the ultra lean mixture with which the engine operates under low loads. Under the low load conditions, the air fuel ratio of the mixture near the spark plug is close to stoichiometric values while the overall mixture is lean, which is called stratified mixture. In order to achieve this, proper air motion during the late stages of compression is a must. Quality of the mixture depends on the time of injection as well as the type of fuel injector and mixture preparation strategy used. Engines employing air guided mixture preparation are considered as the second generation engines. For understanding the efficient mixture preparation method, three types of flow structures like base (low tumble), high tumble and inclined swirl are created inside the engine cylinder using shrouds on the intake valves.
Technical Paper

Effect of Fuel Injector Location and Nozzle-Hole Orientation on Mixture Formation in a GDI Engine: A CFD Analysis

2018-04-03
2018-01-0201
Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions compared to that of the conventional port fuel injection (PFI) engine. But, in these engines, the mixture formation plays an important role which affects combustion, performance and emission characteristics of the engine. The mixture formation, in turn, depends on many factors of which fuel injector location and orientation are most important parameters. Therefore, in this study, an attempt has been made to understand the effect of fuel injector location and nozzle-hole orientation on the mixture formation, performance and emission characteristics of a GDI engine. The mixture stratification inside the combustion chamber is characterized by a parameter called “stratification index” which is based on average equivalence ratio at different zones in the combustion chamber.
Technical Paper

NOx Reduction in SI Engine Exhaust Using Selective Catalytic Reduction Technique

1998-02-23
980935
Copper ion-exchanged X-zeolite with urea infusion was tested for nitrogen oxide (NOx)conversion efficiency in this study. Temperature datapoints were obtained to arrive at peak activation temperatures. Variation of the air/fuel ratio showed the widening of the λ-window(the range of air-fuel ratios over which the NOx conversion efficiency is considerable); a maximum of 62% NOx conversion efficiency was obtained in the lean-burn range. Effects of space velocity variations were also observed. In order to minimise the deactivation of zeolite caused by water, ammonium carbonate and ammonium sulphate were deposited on the copper ion-exchanged X-zeolite and the corresponding NOx conversion efficiencies measured. Ammonia slip (leakage of unreacted ammonia), a prospective pollution hazard, was observed to be more in case of urea infusion than ammonium salt deposition at higher temperatures.
Technical Paper

Evaluation of Combustion Parameters in Direct Injection Diesel Engines - An Easy and Reliable Method

1993-03-01
930605
Evaluation of combustion parameters such as ignition delay and combustion duration are very important in the design and development of reciprocating diesel engines. So far, there is no established and straight, forward method for the estimation of these parameters. In this paper first the available methods have been reviewed. Limitations of the direct method have been discussed. Effect of some operating variables like compression ratio, speed, load and injection advance on the combustion parameters have been studied. An easy and reliable approach has been suggested for the determination of start and end of combustion for a direct injection diesel engine, minimizing the personal judgment. Procedure for calculating the ignition delay and combustion duration based on the experimental study has been highlighted for the proposed method.
Technical Paper

Experimental Investigation of Non-Edible Vegetable Oil Operation in a LHR Diesel Engine for Improved Performance

1993-10-01
932846
The main objective of the present research work is to utilise the higher amounts of exhaust energy of the LHR engines. Three vegetable oils(neem oil, rice bran oil and karanji oil) were tested in the low heat rejection engine. An electrical heater was used to heat the thick vegetable oils or the air and the results were studied. the electrical heater energy was correlated with the energy available in the exhaust of the LHR engine, so that the electrical heater can be replaced by a heat exchanger in the actual engine. The three vegetable oils, without heating, indicated a lower brake thermal efficiency of 1-4% when compared with the standard diesel engine. When these thick vegetable oils are heated and used in LHR engines the brake thermal efficiency improves. For every vegetable oil, there is an optimum temperature at which it gives the best performance.
Technical Paper

Experimental Investigations on the Combustion of Ethanol in a Low Heat Rejection Engine Using Different Methods

1993-03-01
930931
As alternate fuels, ethyl and methyl alcohols stand out because of the feasibility of producing them in bulk from plentifully available raw materials. In the present work, ethanol is used as the only fuel, in the standard and Low Heat Rejection(LHR) diesel engines by adopting three different methods. In the first method, ethanol as the sole fuel was used in the LHR engine with normal metal glowplug and in the second method spark plug assistance was used to initiate combustion. In the third method, ethanol was used as the sole fuel in a LHR engine and a ceramic glow plug was used to initiate combustion. The engine was tested for performance and emissions for the above three methods of 100% ethanol operation in both the standard and LHR diesel engine and the results are compared. The spark plug assisted ethanol operation in the LHR engine gave the highest brake thermal efficiency and the lowest emissions.
X