Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Hybrid Regenerative Water Recovery System for Lunar/Mars Life Support Applications

1992-07-01
921276
Long duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division (CTSD) at Johnson Space Center (JSC). The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in-situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described.
Technical Paper

Development of an Amine-based System for Combined Carbon Dioxide, Humidity, and Trace Contaminant Control

2005-07-11
2005-01-2865
A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand has developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). Our current data demonstrates an amine-based system volume which is competitive with existing technologies which use metal oxides (Metox) and lithium hydroxide sorbents. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Journal Article

Altair Lander Life Support: Design Analysis Cycles 1, 2, and 3

2009-07-12
2009-01-2477
NASA is working to develop a new lunar lander to support lunar exploration. The development process that the Altair project is using for this vehicle is unlike most others. In “Lander Design Analysis Cycle 1” (LDAC-1), a single-string, minimum functionality design concept was developed, including life support systems for different vehicle configuration concepts. The first configuration included an ascent vehicle and a habitat with integral airlocks. The second concept analyzed was a combined ascent vehicle-habitat with a detachable airlock. In LDAC-2, the Altair team took the ascent vehicle-habitat with detachable airlock and analyzed the design for the components that were the largest contributors to the risk of loss of crew (LOC). For life support, the largest drivers were related to oxygen supply and carbon dioxide control. Integrated abort options were developed at the vehicle level.
X