Refine Your Search

Topic

Author

Affiliation

Search Results

Video

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

2011-11-07
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Video

Supplier Discussions - 2012

2012-03-29
Trans Tech recently debuted the all-electric eTrans school bus providing a total zero emission school bus. The presentation will demonstrate Smith Electric Vehicles and their history with electric vehicles. The presentation will help ensure that everybody has an idea of what the electric school bus will do and to dispel any rumors about the vehicle. Presenter Brian S. Barrington, Trans Tech. Bus
Journal Article

Main Design Factors and Unified Software Structure for Cable Puller and Caliper Integrated Type Electric Parking Brakes

2009-10-11
2009-01-3022
The main classification of Electric Parking Brakes (EPB) can be made into cable puller and caliper integrated types. In this paper, the main design considerations that need to be made for each type of system will be examined. In terms of mechanical design, actuator design factors including target capacity, system size, and vehicle mounting will be briefly discussed. In terms of software, a unified software structure that can incorporate both types of EPBs will be introduced. This unified approach, made up of fixed and variable modules, allows for more efficient software development for both types of EPB systems. The fixed modules are related to the identical target functions regardless of EPB type, while the variable modules are made up of the different considerations that need to be made depending on the EPB type in order to meet such targets. Finally, some test results of target functions for both types of EPB systems will be given.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Journal Article

DSI3 Sensor to Master Decoder using Symbol Pattern Recognition

2014-04-01
2014-01-0252
The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines three modulation levels form which 16 valid symbols are coded. This complex structure is best decoded with symbol pattern recognition. This paper proposes a simplification of the correlation score calculation that sharply reduces the required number of operations. Additionally, the paper describes how the pattern recognition is achieved using correlation scores and a decoding algorithm. The performance of this method is demonstrated by mean of simulations with different load models between the master and the sensors and varying noise injection on the channel. We prove than the pattern recognition can decode symbols without any error for up to 24dBm.
Journal Article

On-Chip Delta-Sigma ADC for Rotor Positioning Sensor Application (Resolver-to-Digital Converter)

2014-04-01
2014-01-0333
This paper discusses the RDC method utilizing delta-sigma analog-to-digital converter hardware module (DSADC) integrated in the Infineon's microcontroller family. With its higher resolution capability when compared to the regularly used ADC with successive-approximation (SAR), DSADC seems to have more potential. On the other hand, DSADC's inherent properties, such as asynchronous sampling rate and group delay, which when not handled properly, would have negative effects to the rotor positioning system. The solution to overcome those side-effects involves utilization of other internal microcontroller's resources such as timers and capture units, as well as additional software processing run inside CPU. The rotor positioning system is first modeled and simulated in high-level simulation language environment (Matlab and Simulink) in order to predict the transient- and steady state behaviors. The group delay itself is obtained by simulating the model of DSADC module implementation.
Journal Article

Transfer Path Analysis of Brake Creep Noise

2013-09-30
2013-01-2036
Creep groan is a low frequency noise generated by the stick-slip phenomenon that occurs when moderate brake pressure is applied between the surfaces of the brake disc and brake pad in a low-speed vehicle. It generally occurs when a vehicle is starting to move from a complete static condition or as it slowly comes to a stop when driving. Transfer path analysis (TPA) is a technique than not only provides a methodical approach to trace the flow of vibro-acoustic energy but also allows users to analyze structure-borne noise contributions. Thus, TPA is extensively used to scrutinize creep groan. The primary purpose of this paper is to empirically identify and evaluate the influences of the environmental conditions, chassis system, and brake material on creep groan using the TPA technique. Once the route that contributes the most vibro-acoustic energy from the source to the receiver is identified through TPA, a mass is added on that specific path to observe the changes in creep groan.
Journal Article

Multi-Objective Optimization and Robust Design of Brake By Wire System Components

2013-09-30
2013-01-2059
A Brake By Wire (BBW) system is generally composed of electro-mechanical calipers at each wheel, a pedal simulator and a central controller. The brake demand is processed by the pedal and the central controller commands the brake distribution for each brake actuator. The highly responsive and independent brake actuators lead to enhanced controllability which should result in not only better basic braking performance, but also improvements in various active braking functions such as integrated chassis control, driver assistance systems, or cooperative regenerative braking. Although the BBW system has the potential for numerous advantages and innovations in braking, it has yet to be successfully introduced in series production mainly due to safety and cost concerns. Recent studies have been made to investigate the functional safety aspects and additional mechanical backup measures in this regard.
Journal Article

GBit Ethernet - The Solution for Future In-Vehicle Network Requirements?

2015-04-14
2015-01-0200
In-vehicle communication faces increasing bandwidth demands, which can no longer be met by today's MOST150, FlexRay or CAN networks. In recent years, Fast Ethernet has gained a lot of momentum in the automotive world, because it promises to bridge the bandwidth gap. A first step in this direction is the introduction of Ethernet as an On Board Diagnostic (OBD) interface for production vehicles. The next potential use cases include the use of Ethernet in Driver Assistance Systems and in the infotainment domain. However, for many of these use cases, the Fast Ethernet solution is too slow to move the huge amount of data between the Domain Controllers, ADAS Systems, Safety Computer and Chassis Controller in an adequate way. The result is the urgent need for a network technology beyond the Fast Ethernet solution. The question is: which innovation will provide enough bandwidth for domain controllers, fast flashing routines, video data, MOST-replacement and internal ECU buses?
Technical Paper

Routing Methods Considering Security and Real-Time of Vehicle Gateway System

2020-04-14
2020-01-1294
Recently, vehicle networks have increased complexity due to the demand for autonomous driving or connected devices. This increasing complexity requires high bandwidth. As a result, vehicle manufacturers have begun using Ethernet-based communication for high-speed links. In order to deal with the heterogeneity of such networks where legacy automotive buses have to coexist with high-speed Ethernet links vehicle manufacturers introduced a vehicle gateway system. The system uses Ethernet as a backbone between domain controllers and CAN buses for communication between internal controllers. As a central point in the vehicle, the gateway is constantly exchanging vehicle data in a heterogeneous communication environment between the existing CAN and Ethernet networks. In an in-vehicle network context where the communications are strictly time-constrained, it is necessary to measure the delay for such routing task.
Journal Article

Markov Chain-based Reliability Analysis for Automotive Fail-Operational Systems

2017-03-28
2017-01-0052
A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
Journal Article

Smart Power Semiconductors - Repetitive Short Circuit Operation

2008-04-14
2008-01-0719
In addition to basic switching functionality, smart power switches mainly provide diagnostic and protection functions, e.g. for short circuits to the load, which makes it all the more surprising that short circuit protected smart switches have been used for years in automotive applications without there being a precise definition of a short circuit. This article describes what Infineon has done to fill this gap. It was first necessary to define the kind of short circuits likely to occur in automotive applications and to specify the use and operating points of the smart switches. The next logical step was the standardization of the test circuit and application conditions in the AEC (Automotive Electronics Council) to allow an industry-wide comparison of the test results.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

Robust Design for Occupant Protection System Using Taguchi's Method

2007-08-05
2007-01-3724
This paper presents a study on robust design for occupant safety system using Taguchi's method. There are two design approaches to develop occupant protection system. The one is optimal design methodology such as DOE and optimization method. The other is robust design such as Taguchi's method and so on. In this paper, the DOE has been conducted with respect to design variables and the probability distribution of design objective with respect to random variables has been derived. Next, the robust design has been done using Taguchi's method with design and random variables. Finally, the effectiveness of robust design has been shown through the comparison of these two results
Technical Paper

Design Considerations for Power Electronics in HEV Applications

2007-04-16
2007-01-0277
Today the majority of power electronics is developed based on the requirements set by the main fields of application e.g. power generation, power supply, industrial drive and traction. With introduction to automotive applications new requirements have to be taken into account. This paper discusses how interconnection technologies for power semiconductors can be improved to meet the demand for higher temperature capability in HEV applications.
Technical Paper

Invisible Knee Airbag Module Development

2007-04-16
2007-01-0347
Recently, the automotive industry has become more interested in knee injury, particularly in the application and development of knee airbag modules in vehicles to achieve a good rating during EuroNCAP and IIHS tests. Also, EuroNCAP and IIHS press the automotive industry to equip vehicles with knee airbag modules for occupant safety improvement in barrier tests. (1) Therefore, an invisible knee airbag module has been independently developed through design, simulation, static deployment tests and dynamic knee impact tests. A knee airbag module development process has been established and test results that were obtained from the development process are presented. Also, some design considerations for invisible knee airbag module development are discussed in this paper. A knee airbag module, which has been changed to match the IP lower panel shape and packaging specific vehicle environment, will be developed and produced in the near future.
Technical Paper

Performance and Technology Comparison of GMR Versus Commonly used Angle Sensor Principles for Automotive Applications

2007-04-16
2007-01-0397
Position detection and control is necessary in modern automotive applications because of remotely controlled actuators, such as window lifters or windshield. In recent years, the demand for reliable actuators for safety critical systems, such as power steering systems, has also increased significantly. This creates a growing demand for fast, accurate and efficient servo motor systems that are increasingly smarter, smaller and cheaper. One interesting option is to use Giant Magneto Resistive (GMR) angle sensors to replace the resolvers, Hall, inductive and Anisotropic Magneto Resistive Effect (AMR) Sensors commonly used today for shaft-angle measurements. In principle, there are functional differences among various angle measurement technologies; thus, the effect of switching between them needs to be analyzed.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Numerical Investigation of Thermal Behavior in Brake Assembly During the ALPINE Braking Mode

2007-04-16
2007-01-1021
A three-dimensional numerical method for the prediction of transient temperature of various brake components including brake fluid reached during the ALPINE braking mode in a ventilated disc brake assembly is presented in this paper. The ALPINE braking mode is the representative mountain descent simulation mode. For this precise analytical prediction of each brake component temperature during a repeated braking and heat soaking, a specified disc brake system is modeled including the brake disc, pad assembly consist of lining and back plate, piston and caliper body. Through this three-dimensional numerical method, a correlativity of the brake assembly geometry and the brake fluid temperature could be expected. Analytical results are compared with measured data with a good correlation. The effects of the various system parameters on the brake fluid temperature are also investigated with a three-dimensional computation.
Technical Paper

Lithium-ion Battery Management Integrating Active Load Balancing

2008-04-14
2008-01-1335
Increasingly stringent requirements to improve fuel economy and reduce emissions are pushing the automotive industry toward more innovative solutions. To fulfill the demand, OEMs are developing hybrid systems with powerful electronics. The key technology is in all cases the battery. It is the most critical and expensive element of hybrid systems. The battery requires special care, as it must supply up to 400 Volts (V) and have a capacity of up to several kilowatt-hours (kWh). This paper will review the main functions of a Lithium-ion (Li-ion) battery management system, including power on/off, charging/discharging, and computation of the state of charge and state of health. In order to increase the battery lifespan, new functions such as active load balancing must be implemented.
X