Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Video

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

2011-11-07
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Technical Paper

Routing Methods Considering Security and Real-Time of Vehicle Gateway System

2020-04-14
2020-01-1294
Recently, vehicle networks have increased complexity due to the demand for autonomous driving or connected devices. This increasing complexity requires high bandwidth. As a result, vehicle manufacturers have begun using Ethernet-based communication for high-speed links. In order to deal with the heterogeneity of such networks where legacy automotive buses have to coexist with high-speed Ethernet links vehicle manufacturers introduced a vehicle gateway system. The system uses Ethernet as a backbone between domain controllers and CAN buses for communication between internal controllers. As a central point in the vehicle, the gateway is constantly exchanging vehicle data in a heterogeneous communication environment between the existing CAN and Ethernet networks. In an in-vehicle network context where the communications are strictly time-constrained, it is necessary to measure the delay for such routing task.
Journal Article

Markov Chain-based Reliability Analysis for Automotive Fail-Operational Systems

2017-03-28
2017-01-0052
A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
Technical Paper

Performance and Technology Comparison of GMR Versus Commonly used Angle Sensor Principles for Automotive Applications

2007-04-16
2007-01-0397
Position detection and control is necessary in modern automotive applications because of remotely controlled actuators, such as window lifters or windshield. In recent years, the demand for reliable actuators for safety critical systems, such as power steering systems, has also increased significantly. This creates a growing demand for fast, accurate and efficient servo motor systems that are increasingly smarter, smaller and cheaper. One interesting option is to use Giant Magneto Resistive (GMR) angle sensors to replace the resolvers, Hall, inductive and Anisotropic Magneto Resistive Effect (AMR) Sensors commonly used today for shaft-angle measurements. In principle, there are functional differences among various angle measurement technologies; thus, the effect of switching between them needs to be analyzed.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

Cost Efficient Integration for Decentralized Automotive ECU

2004-03-08
2004-01-0717
As the demand for enhanced comfort, safety and differentiation with new features continues to grow and as electronics and software enable most of these, the number of electronic units or components within automobiles will continue to increase. This will increase the overall system complexity, specifically with respect to the number of controller actuators such as e-motors. However, hard constraints on cost and on physical boundaries such as maximum power dissipation per unit and pin-count per unit/connector require new solutions to alternative system partitioning. Vehicle manufacturers, as well as system and semiconductor suppliers are striving for increased scalability and modularity to allow for most cost optimal high volume configurations while featuring platform reuse and feature differentiation. This paper presents new semiconductor based approaches with respect to technologies, technology mapping and assembly technologies.
Technical Paper

Effective System Development Partitioning

2001-03-05
2001-01-1221
In terms of modern technical systems, the automotive sector is characterized by escalating complexity and functionality requirements. The development of embedded control systems has to meet highest demands regarding process-, time- and cost-optimization. Hence, the efficiency of software development becomes a crucial competitive advantage. Systems design engineers need effective tools and methods to achieve exemplary speed and productivity within the development phase. To obtain such tools and methods, semiconductor manufacturers and tool manufacturers must work closely together. Within the joint efforts of ETAS and Infineon, the software tool suite ASCET-SD was enhanced to generate efficient C code for Infineon's TriCore architecture mapped on ETAS's real-time operating system ERCOSEK. The processor interface to application & calibration tools was realized using the ETK probe based on a JTAG/Nexus link at very high bandwidth.
Technical Paper

Mechatronic Solution for Motor Management

2002-03-04
2002-01-0473
A mechatronic approach to implementing a BLDC motor drive control system is described. The partitioning method used allows the motor power to be scaled from around 100 watts to 1 kilowatt. The chosen approach maps the required electronic functionality to different existing front-end technologies. By drawing on vast experience with back-end technologies, especially chip-on-chip assembly, it is possible to implement a system in a one-package solution. The advantages of each technology are used to achieve a cost-effective, space-saving solution.
Technical Paper

System-Level Partitioning Using Mission-Level Design Tool for Electronic Valve Application

2003-03-03
2003-01-0865
In defining innovative and cost-effective chip sets for future automotive applications, system architects need high-level tools that allow them to rapidly determine the best silicon partitioning for a given application in terms of system performance as well as cost. The tool needs to be flexible, modular, and swift such that the system designer can perform abstract simulation iterations quickly for various functional partitioning scenarios, without requiring excessive computer resources. The tool must also be portable and adaptable to provide a simulation environment suitable to systems- or car-manufacturers for in-depth applications simulation and architecture assessment. The semiconductor component definition process using such a “mission-level” design tool for the automotive application electronic valve will be demonstrated. Methods for the analysis of electronic valve control system architectures using mission-level simulation will be developed.
Technical Paper

Over the Air Software Update Realization within Generic Modules with Microcontrollers Using External Serial FLASH

2017-03-28
2017-01-1613
Connecting mobile communication channels to vehicles’ networks is currently attracting engineers in a wide range. Herein the desire of vehicle manufacturers to remotely execute software updates over the air (SOTA) within electronic control units (ECU) is probably the field of highest attention at the moment. Today software updates are typically done at vehicle service stations and connection the vehicles electronic network via the onboard diagnosis (OBD) interface to a service computer. Herby the duration of the update is invisible to the user, as this happens during standard service appointments. With introduction of SOTA, these updates become very convenient to the customer and can lead to higher customer satisfaction levels. SOTA can be made transparent to the user however the method of implementation can affect the user experience.
Technical Paper

Safety Element out of Context - A Practical Approach

2012-04-16
2012-01-0033
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Technical Paper

Seamless Solution for Electronic Power Steering

2006-04-03
2006-01-0593
The number of safety critical automotive applications employing high current brushless motors continues to increase (Steering, Braking, and Transmission etc.). There are many benefits when moving from traditional solutions to electrically actuated solutions. Some of these benefits can include increased fuel economy, simplified vehicle installation and packaging, increased feature set, improved safety and/or convenience, simplified unit assembly and modular testability prior as well as during vehicle manufacturing. The trend to implement brushless motors in these applications (which require electronically controlled commutation) has also brought with it the need for powerful inverters, which primarily consist of Power MOSFETs and MOSFET Driver ICs. This paper reviews the challenges associated with the design of safety critical electronic systems which combine sensing, control and actuation.
Technical Paper

Hardware and Software Constraints for Automotive Firewall Systems?

2016-04-05
2016-01-0063
Introduction The introduction of Ethernet and Gigabit Ethernet [2] as the main invehicle network infrastructure is the technical foundation for different new functionalities such as piloted driving, minimizing the CO2- footprint and others. The high data rate of such systems influences also the used microcontrollers due the fact that a big amount of data has to be transferred, encrypted, etc. Figure 1 Motivation - Vehicles will become connected to uncontrolled networks The usage of Ethernet as the in-vehicle-network enables the possibility that future road vehicles are going to be connected with other vehicles and information systems to improve system functionality. These previously closed automotive systems will be opened up for external access (see Figure 1). This can be Car2X connectivity or connection to personal devices. Allowing vehicle systems to communicate with other systems that are not within their physical boundaries impose a previously non-existing security problem.
Technical Paper

Improved ECU End of Line Testing using Multicore Microcontroller

2015-04-14
2015-01-0186
End of Line tests are brief set of tests intended to evaluate ECU's in order to ensure correct functioning of its intended functionality. As these tests are executed on the production line, available time to perform these tests is limited. On one hand, faster production demands require these tests and its framework to be designed in a time optimized manner. On the other hand, increase in ECU functionality translates to an increase in test's functional coverage, requiring more time. Therefore the time taken to execute the tests reaches a critical point in overall ECU production. Availability of multicore microcontrollers with increase in clock speed can increase the performance of end of line tests, but design challenges e.g. synchronization do not guarantee a linear performance increase. Therefore, design of test execution framework is absolutely critical to increase performance of test execution.
Technical Paper

Cybersecurity in the Context of Fail-Operational Systems

2024-04-09
2024-01-2808
The development of highly automated driving functions (AD) recently rises the demand for so called Fail-Operational systems for native driving functions like steering and braking of vehicles. Fail-Operational systems shall guarantee the availability of driving functions even in presence of failures. This can also mean a degradation of system performance or limiting a system’s remaining operating period. In either case, the goal is independency from a human driver as a permanently situation-aware safety fallback solution to provide a certain level of autonomy. In parallel, the connectivity of modern vehicles is increasing rapidly and especially in vehicles with highly automated functions, there is a high demand for connected functions, Infotainment (web conference, Internet, Shopping) and Entertainment (Streaming, Gaming) to entertain the passengers, who should no longer occupied with driving tasks.
X