Refine Your Search

Topic

Author

Search Results

Technical Paper

Prediction of Internal Responses Due to Changes in Boundary Conditions Using System Frequency Response Functions

2021-08-31
2021-01-1058
Vibration testing is often carried out for automotive components to meet guidelines based on their operational environments. This is an iterative process wherein design changes may need to be made depending on an intermediate model’s dynamic behavior. Predicting the behavior based on modifications in boundary conditions of a well-defined numerical model imparts practical insights to the component’s responses. To this end, application of a general method using experimental free-free condition frequency response functions of a structure is discussed in the presented work. The procedure is shown to be useful for prediction of responses when kinematic boundary conditions are applied, without the need for an actual measurement. This approach is outlined in the paper and is applied to datasets where dynamic modifications are made at multiple boundary nodes.
Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Journal Article

Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)

2010-04-12
2010-01-0307
The emissions legislation in the US and Europe introduces the need for the application of diesel particulate filters (DPF) in most diesel vehicles. In order to fulfill future OBD legislations, which include more stringent requirements on monitoring the functionality of those particulate filters, new sensors besides the differential pressure sensor are necessary. The new sensors need to directly detect the soot emission after DPF and withstand the harsh exhaust gas environment. Based on multi layer ceramic sensor technology, an exhaust gas sensor for particulate matter (EGS-PM) has been developed. The soot-particle-sensing element consists of two inter-digitated comb-like electrodes with an initially infinite electrical resistance. During the sensor operation, soot particles from the exhaust gas are collected onto the inter-digital electrodes and form conductive paths between the two electrode fingers leading to a drop of the electrical resistance.
Technical Paper

Design Considerations for Power Electronics in HEV Applications

2007-04-16
2007-01-0277
Today the majority of power electronics is developed based on the requirements set by the main fields of application e.g. power generation, power supply, industrial drive and traction. With introduction to automotive applications new requirements have to be taken into account. This paper discusses how interconnection technologies for power semiconductors can be improved to meet the demand for higher temperature capability in HEV applications.
Technical Paper

Numerical Modeling of the Dynamic Transport of Multi-Component Exhaust Gases in Oxygen Sensors

2007-04-16
2007-01-0931
Today's wide range oxygen sensors are based on the limiting current principle, where an applied voltage induces electrochemical reactions in a ceramic cell. Since the diffusive transport of exhaust gas to the electrodes is limited by a transport barrier, the resulting electric current can be related to the exhaust gas composition. A model is presented which describes the transient transport of gas mixtures from the bulk exhaust gas to the electrodes of an oxygen sensor at variable pressure and composition. The internal structure of the transport barrier was accounted for by geometrical parameters. A variety of numerical results are compared with experimental data.
Technical Paper

Numerical and Experimental Analysis of the Mass Transfer in Exhaust Gas Sensors

2007-04-16
2007-01-1144
Within the scope of this work, the convective mass transfer to the zirconia sensor element of an exhaust oxygen sensor was analyzed experimentally and numerically. For the experimental setup, a heightened model of an oxygen sensor was built from Lucite® considering the similarity theory. Mass transfer is measured based on the absorption of ammonia and subsequent immediate color reaction. For the numerical investigation, a three-dimensional model of the test rig was built. To predict the flow pattern and the species transport inside the protection tubes, the commercial CFD-Code FLUENT® is used. The model for the mass transfer to the surface is implemented through user-defined functions.
Technical Paper

Control Strategy for NOx - Emission Reduction with SCR

2003-11-10
2003-01-3362
Future emission standards for heavy-duty vehicles like Euro 4, Euro 5, US '07 require advanced engine functionality. One contribution to achieve this target is the catalytic reduction of nitrogen oxides by injection of urea water solution to the exhaust gas. An overview on a urea dosing system, also called DENOXTRONIC, is given and a dosing strategy is described.
Technical Paper

Cost Efficient Integration for Decentralized Automotive ECU

2004-03-08
2004-01-0717
As the demand for enhanced comfort, safety and differentiation with new features continues to grow and as electronics and software enable most of these, the number of electronic units or components within automobiles will continue to increase. This will increase the overall system complexity, specifically with respect to the number of controller actuators such as e-motors. However, hard constraints on cost and on physical boundaries such as maximum power dissipation per unit and pin-count per unit/connector require new solutions to alternative system partitioning. Vehicle manufacturers, as well as system and semiconductor suppliers are striving for increased scalability and modularity to allow for most cost optimal high volume configurations while featuring platform reuse and feature differentiation. This paper presents new semiconductor based approaches with respect to technologies, technology mapping and assembly technologies.
Technical Paper

PVD-Wear Resistant Coatings of Homogeneous and Graded Ti(C,N): Residual Stresses and Mechanical Performance under Hertzian Load

2002-03-19
2002-01-1407
Ceramic protective coatings on cutting tools for steel machining are state of the art in industrial applications. Several concepts to improve the efficiency of machining processes as for instance high-speed or dry cutting yield increasing demands regarding the wear and corrosion resistance of the protective tool coatings. The generic process characteristics of PVD-coating techniques offer opportunities to tailor the coatings in terms of microstructure and residual stress states by adjusting appropriate process parameters. Besides chemical composition and microstructure the residual stresses in the coatings strongly influence their in-service performance and, are therefore important to assess and to correlate with process parameters.
Technical Paper

X-by-Wire: Opportunities, Challenges and Trends

2003-03-03
2003-01-0113
This paper will outline the results of a study performed to analyze the market introduction of x-by-wire applications in the context of weak global industry environment, technological and legislative challenges, standardization issues and end customer benefits. This paper attempts to provide a bird-view on influence factors and impacts for the x-by-wire market, including e.g. the end customer's acceptance and legal environment driving further development in specific areas. Further, major driving forces on semiconductor/component level will be outlined regarding e.g. pin-count, computation performance and heat dissipation, but also possible scenarios and solutions towards safe and efficient system design and partitioning.
Technical Paper

Integrated Mechatronic Design and Simulation of a Door Soft Close Automatic with Behavioral Models of Smart Power ICs

2002-03-04
2002-01-0564
Based on the example of a door soft close automatic the potential of integrated system simulation in the automotive systems development is demonstrated. The modeling approach is covering several physical domains like mechanics, electromagnetics and semiconductor physics. With adequate simplifying methods a time efficient model is generated, which allows system optimization in the concept phase. Time consuming redesigns can thus be minimized.
Technical Paper

Time Resolved Spray Characterisation in a Common Rail Direct-Injection Production Type Diesel Engine Using Combined Mie/LIF Laser Diagnostics

2003-03-03
2003-01-1040
This study reports on laser-based diagnostics to temporally track the evolution of liquid and gaseous fuel in the cylinder of a direct injection production type Diesel engine. A two-dimensional Mie scattering technique is used to record the liquid phase and planar laser-induced fluorescence of Diesel is used to track both liquid and vaporised fuel. LIF-Signal is visible in liquid and gas phase, Mie scattering occurs only in zones where fuel droplets are present. Distinction between liquid and gaseous phase becomes therefore possible by comparing LIF- and Mie-Signals. Although the information is qualitative in nature, trends of spray evolution are accessible. Within this study a parametric variation of injection pressure, in-cylinder conditions such as gas temperature and pressure as well as piston geometry are discussed. Observations are used to identify the most sensitive parameters and to qualitatively describe the temporal evolution of the spray for real engine conditions.
Technical Paper

Redundant and Diverse Magnetic Field Digital Linear Hall Sensor Concept for ASIL D Applications

2017-03-28
2017-01-0053
Functional safe systems fulfilling the ISO 26262 standard are getting more important for automotive applications where additional redundant and diverse functionality is needed for higher rated ASIL levels. This can result in a very complex and expensive system setup. Here we present a sensor product developed according ISO 26262. This sensor product comprises a two channel redundant and also diverse implemented magnetic field sensor concept with linear digital outputs on one monolithically integrated silicon substrate. This sensor is used for ASIL D applications like power-steering torque measurement, where the torque is transferred into a magnetic field signal in a certain magnetic setup, but can also be used in other demanding sensor applications concerning safety. This proposed and also implemented solution is beneficial because of implementation on a single chip in one single chip-package but anyway fulfilling ASIL D requirements on system level.
Technical Paper

Laser-Based Measurements of Surface Cooling Following Fuel Spray Impingement

2018-04-03
2018-01-0273
A major source for soot particle formation in Gasoline-Direct-Injection (GDI) engines are fuel-rich zones near walls as a result of wall wetting during injection. To address this problem, a thorough understanding of the wall film formation and evaporation processes is necessary. The wall temperature before, during and after fuel impingement is an important parameter in this respect, but is not easily measured using conventional methods. In this work, a recently developed laser-based phosphor thermography technique is implemented for investigations of spray-induced surface cooling. This spatially and temporally resolved method can provide surface temperature measurements on the wetted side of the surface without being affected by the fuel-film. Zinc oxide (ZnO) particles, dispersed in a chemical binder, were deposited onto a thin steel plate obtaining a coating thickness of 17 μm after annealing.
Technical Paper

Hybrid Cars Setting New Challenges for Optimized Power Semiconductors

2014-04-01
2014-01-0242
The electrification of the powertrain is still one of the main challenges and innovation drivers for modern cars. With the introduction of the Toyota Prius, launched in Japan in 1997 the first commercially available hybrid car in mass production, the development continued towards the BMW i3 launched in July 2013. One main component for all kind of hybrid cars is still the power semiconductor, which is used for DC/DC converters and for the inverter to drive the electric motor for the traction control. What makes the selection of the right power semiconductor complex, is the variety of different voltage levels within the car (from standard 12V board net, the new 48V board net all the way up to 400V and above) plus different requirements in terms of switching and conduction performance, or accordingly power losses. The selection of device by application and voltage will be discussed in this paper.
Technical Paper

A Universal and Cost-Effective Fuel Gauge Sensor Based on Wave Propagation Effects in Solid Metal Rods

1994-03-01
940628
In recognition of safety considerations, modern fuel tanks are frequently extremely irregular in shape. This places limits on the application of conventional potentiometric sensors. Required are more universal sensors without mechanically-moving parts. These sensors should also be characterized by especially good resolution and precision in the residual-quantity range, that is, the zero point precision should be of a high order. One type of metal rod can be bent into any of a variety of shapes to provide an effective means of monitoring the fuel level. In this metal rod, the propagation characteristics of a certain type of sound wave, known as bending waves, display major variations according to the level of the surrounding medium: The waves spread more rapidly through the exposed section of the rod than through the area which remains submerged. Thus the rod's characteristic oscillation frequency varies as a function of immersion depth.
Technical Paper

Secondary Air Injection with a New Developed Electrical Blower for Reduced Exhaust Emissions

1994-03-01
940472
Secondary air injection after cold start gives two effects for reduced exhaust emissions: An exothermic reaction at the hot exhaust valves occurs, which increases the temperature of the exhaust gas. It gives sufficient air to the catalyst during the cold start fuel enrichment that is necessary to prevent driveability problems. Handicaps for the wide use of air injection include space constraints, weight and price. An electrical air blower was choosen to best satisfy all these requirements. The development steps are described. The result is a three stage radialblower with extremly high revolutions of about 18000 rpm. The system configuration and the outcome are demonstrated on the new C-Class of Mercedes-Benz. The results show emission reductions higher than 50 %, while also satisfying the development goals of noise, volume, weight and cost requirements.
Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
Technical Paper

Advanced Planar Oxygen Sensors for Future Emission Control Strategies

1997-02-24
970459
This paper presents advanced planar ZrO2 oxygen sensors being developed at Robert Bosch using a modified tetragonal partially stabilized zirconia (TZP) with high ionic conductivity, high phase stability and high thermo-mechanical strength. Green tape technology combined with highly automated thickfilm techniques allows robust and cost effective manufacturing of those novel sensing elements. Standardization of assembling parts reduces the complexity of the assembly line even in the case of different sensing principles. The sensor family meets the new requirements of modern ULEV strategies like fast light off below 10 s and linear control capability as well as high quality assurance standards. High volume production will start in 1997 for European customers.
X