Refine Your Search

Topic

Search Results

Video

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

2011-11-07
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Journal Article

DSI3 Sensor to Master Decoder using Symbol Pattern Recognition

2014-04-01
2014-01-0252
The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines three modulation levels form which 16 valid symbols are coded. This complex structure is best decoded with symbol pattern recognition. This paper proposes a simplification of the correlation score calculation that sharply reduces the required number of operations. Additionally, the paper describes how the pattern recognition is achieved using correlation scores and a decoding algorithm. The performance of this method is demonstrated by mean of simulations with different load models between the master and the sensors and varying noise injection on the channel. We prove than the pattern recognition can decode symbols without any error for up to 24dBm.
Technical Paper

Fuel Consumption and NOx Emission Prediction of Heavy-Duty Diesel Vehicles under Different Test Cycles and Their Sensitivities to Driving Factors

2020-09-15
2020-01-2002
Due to the rapid development of road infrastructure and vehicle population in China, the fuel consumption and emission of on-road vehicles tested in China World Transient Vehicle Cycle (C-WTVC) cannot indicate the real driving results. But the test results in China Heavy-duty Commercial Vehicle Test Cycle-Coach (CHTC-C) based on the road driving conditions in China are closer to the actual driving data. In this paper, the model for predicting the performance of heavy-duty vehicles is established and validated. The fuel consumption and NOx emission of a Euro VI heavy-duty coach under C-WTVC and CHTC-C tests are calculated by employing the developed model. Furthermore, the fuel consumption of the test coach is optimized and its sensitivity to the driving factors is analyzed.
Technical Paper

Routing Methods Considering Security and Real-Time of Vehicle Gateway System

2020-04-14
2020-01-1294
Recently, vehicle networks have increased complexity due to the demand for autonomous driving or connected devices. This increasing complexity requires high bandwidth. As a result, vehicle manufacturers have begun using Ethernet-based communication for high-speed links. In order to deal with the heterogeneity of such networks where legacy automotive buses have to coexist with high-speed Ethernet links vehicle manufacturers introduced a vehicle gateway system. The system uses Ethernet as a backbone between domain controllers and CAN buses for communication between internal controllers. As a central point in the vehicle, the gateway is constantly exchanging vehicle data in a heterogeneous communication environment between the existing CAN and Ethernet networks. In an in-vehicle network context where the communications are strictly time-constrained, it is necessary to measure the delay for such routing task.
Technical Paper

A New Flux Weakening Control Strategy for IPMSM (Interior Permanent Magnet Synchronous Machine) in Automotive Applications

2020-04-14
2020-01-0466
As one of the core components of electric vehicles(EV), the drive motor system has a significant impact on the EV operation performance. The interior permanent magnet synchronous motor (IPMSM) has a wide range of applications in EV, due to its high efficiency, high power density, high torque current and wide speed range. In the field of EV, motor control system is required to have a high operating range. IPMSM operates at constant torque mode below rated speed and constant power mode above rated speed. The back electromotive force(Back-EMF) generated by the rotor in the constant power mode causes the inverter output voltage to saturate. Therefore, it is necessary to ensure that the controller is still operating in the linear region by applying a flux weakening(FW) current to the stator.
Technical Paper

Research on Trajectory Planning and Tracking Strategy of Lane-changing and Overtaking based on PI-MPC Dual Controllers

2021-10-11
2021-01-1262
Aiming at the problem of poor robustness after the combination of lateral kinematics control and lateral dynamics control when an autonomous vehicle decelerates and changes lanes to overtake at a certain distance. This paper proposes a trajectory determination and tracking control method based on a PI-MPC dual algorithm controller. To describe the longitudinal deceleration that satisfies the lateral acceleration limit during a certain distance of lane change, firstly, a fifth-order polynomial and a uniform deceleration motion formula are established to express the lateral and longitudinal displacements, and a model prediction controller (MPC) is used to output the front wheel rotation angle. Through the dynamic formula and the speed proportional-integral (PI) controller to control and adjust the brake pressure.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

Design Considerations for Power Electronics in HEV Applications

2007-04-16
2007-01-0277
Today the majority of power electronics is developed based on the requirements set by the main fields of application e.g. power generation, power supply, industrial drive and traction. With introduction to automotive applications new requirements have to be taken into account. This paper discusses how interconnection technologies for power semiconductors can be improved to meet the demand for higher temperature capability in HEV applications.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Initial Stress and Manufacture Stress Testing in Transparent Material

2007-04-16
2007-01-1215
Transparent materials such as Plexiglas and glass are applied in airplane and boat widely as the windows and hatches. There are three type stresses in the structure made of Plexiglas or glass, which are residual stresses from the casting, residual stresses due to manufacturing process involving sheet forming structure and the stresses from serving period. In the paper the stresses are studied by laser scattered Photoelasticy method. Phase shift method is presented to recognize scattered light patterns automatically. The residual stresses in Plexiglas plate and shell were analyzed by thin plate-shell theory. Stresses in the Plexiglas and shell were tested by laser scattered Photoelastic method.
Technical Paper

Noise Source Identification of a Diesel Engine Using Inverse Boundary Element Method

2008-04-14
2008-01-0729
The inverse boundary element method (IBEM) is presented to accurately identify the noise sources of a diesel engine in this study. The sound pressures on four near-field planes were measured as inputs for the method. Then, the acoustic model of the full diesel engine was established using the boundary element method, and the acoustic transfer vectors (ATV) between the surface normal velocity and acoustic pressure at field points were calculated over the frequency range of interest. Based on the measured sound pressure and the ATVs, the surface normal velocity distribution of the diesel engine was reconstructed by the IBEM. The reconstructed pressures at two reference field points were compared with the measured ones. Furthermore, the panel contribution of each engine component was analyzed through the reconstructed surface velocity.
Technical Paper

Non-standard CAN Network Topologies Verification at High Speed Transmission Rate using VHDL-AMS

2010-04-12
2010-01-0688
This paper considers the verification of non-standard CAN network topologies of the physical layer at high speed transmission rate (500.0Kbps and 1.0Mbps). These network topologies including single star, multiple stars, and hybrid topologies (multiple stars in combination with linear bus or with ring topology) are simulated by using behavior modeling language (VHDL-AMS) in comparison to measurement. Throughout the verification process, CAN transceiver behavioral model together with other CAN physical layer simulation components have been proved to be very accurate. The modeling of measurement environment of the CAN network is discussed, showing how to get the measurement and simulation results well matched. This demonstrates that the simulation solution is reliable, which is highly desired and very important for the verification requirement in CAN physical layer design.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

Innovative Chip Set for Pressure and Acceleration Based Airbag Solutions

2004-03-08
2004-01-0846
More and more passenger cars are equipped with passive side protection systems such as thorax airbags for front and rear passengers. In the past, side airbag protection systems used sensors based on acceleration measurements [1]. In the meantime different sensor principles have been tested in order to increase the performance of this application. The intention has been to achieve faster firing decisions and to decrease the misuse risk for a floor or chassis impact. This paper presents the partitioning of an advanced chipset for pressure and acceleration based airbag systems. It shows the communication link between the sensors, the receiver-IC and other blocks in the application.
Technical Paper

TTCAN from Applications to Products in Automotive Systems

2003-03-03
2003-01-0114
This paper outlines the results of a study performed to analyze the mission of TTCAN from applications to products for automotive systems. As commonly acknowledged communication is one of the key elements for future and even present systems such as an automobile. A dramatically increasing number of busses and gateways even in low- to midrange vehicles is putting significant burden upon the validation scenario as well as the cost. Accordingly, numerous new initiatives have been started worldwide in order to find solutions to this; some of them by the definition of enhanced or new protocols. This paper shall have a look particular on the new standard of TTCAN (time-triggered communication on CAN). This protocol is based on the CAN data link layer as specified in ISO 11898-1 and may use standardized CAN physical layers such as specified in ISO 11898-2 (high-speed transceiver) or in ISO 11898-3 (fault-tolerant low-speed transceiver).
Technical Paper

Investigation of Internal Thermal Impact Effect on Motorcycle Catalytic Converter Activity and Microstructure

2003-01-15
2003-32-0059
Chinese new legislations on two wheels and mopeds have been published recently. Depending on the latest exhaust statistic analyses, with the resulting of tighter limits, the application of catalytic converters is becoming a prevalent and a cost-efficient solution for Chinese motorcycle manufacturers. The phenomenon of exhaust temperature changes rapidly during real driving process is well known as one of major destructive factors which have effects upon converter's durability. One 125 cm3 motorcycle is selected as a typical model in this research project. Exhaust temperature of the 125 cm3 motorcycle is measured and recorded during the process of ECE 40 driving cycle. A simulation test system has been set up successfully depending on those temperature data. Conversion ratio of converter sample lost distinctly after 18 hours' thermal impact tests. After further analyses, there were not evident changes in microstructure and substance on the surface of converter.
Technical Paper

Numerical Investigation of the Intake Flow of a Four-Valve Diesel Engine

2017-10-08
2017-01-2211
The intake process plays an important role in the operation of internal combustion engines. In the present study, a three-dimensional transient simulation of a four-valve diesel engine was performed using Large Eddy Simulation (LES) model based on software CONVERGE. The mean velocity components in three directions through the intake valve curtain, the flow separation around the intake valves, the influences of inlet jet on turbulence flow field and cycle-to-cycle variation were investigated in this work. The result shows that the mean velocity distributes non-uniformly near the valve curtain at high valve lifts. In contrast, the mean velocity distribution is uniform at low valve lifts. It is found that the flow separation occurs at valve stem, valve seat and valve sealing through the outlet of the helical port. In contrast, flow separation is only observed in the valve seat through the outlet of the tangential port.
Technical Paper

Development of Fuel Consumption Test Method Standards for Heavy-Duty Commercial Vehicles in China

2011-09-13
2011-01-2292
To restrain the environmental and energy problems caused by oil consumption and improve fuel economy of heavy-duty commercial vehicles, China started developing relevant standards from 2008. This paper introduces the background and development of China's national standard “Fuel consumption test methods for heavy-duty commercial vehicles”, and mainly describes the test method schemes, driving cycle and weighting factors for calculating average fuel consumption of various vehicle categories. The standard applies to heavy-duty vehicles with the maximum design gross mass greater than 3500 kg, including semi-trailer tractors, common trucks, dump trucks, city buses and common buses. The standard adopts the C-WTVC driving cycle which is adjusted on the basis of the World Transient Vehicle Cycle[1, 2] and specifies weighting factors of urban, rural and motorway segments for different vehicle categories.
Technical Paper

Leveraging Hardware Security to Secure Connected Vehicles

2018-04-03
2018-01-0012
Advanced safety features and new services in connected cars depend on the security of the underlying vehicle functions. Due to the interconnection with the outside world and as a result of being an embedded system a modern vehicle is exposed to both, malicious activities as faced by traditional IT world systems as well as physical attacks. This introduces the need for utilizing hardware-assisted security measures to prevent both kinds of attacks. In this paper we present a survey of the different classes of hardware security devices and depict their different functional range and application. We demonstrate the feasibility of our approach by conducting a case study on an exemplary implementation of a function-on-demand use case. In particular, our example outlines how to apply the different hardware security approaches in practice to address real-world security topics. We conclude with an assessment of today’s hardware security devices.
Technical Paper

The Synthetic 3DOF Wheel Force for Passenger Vehicle Based on Predicted Frequency Response Function Model

2018-04-03
2018-01-0123
To determine the vehicle chassis requirements, wheel force transducer (WFT) have been the best option when it is being used in targeting customer correlation or determining the effective use of the proving ground. However, using wheel force transducer in customer correlation fleet test is often unfeasible due to the huge cost and low practicability. As a result, engineers have to choose other transducer measures. This paper describes an effective approach of wheel force prediction by using the frequency response function (FRF) model of vehicle dynamic system. A vehicle system linear modelling technique is used. For the system identification of FRF, the acceleration and wheel force time history data, as system input and output, are collected from an instrumented passenger car as it traverses in different real-world proving ground surfaces. The obtained FRF represents the complex suspension mechanical model. Once the FRF is calculated, the predicted force signal can be implemented.
X