Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Investigations on the Sources of Particulate Emission within a Natural Gas Spark-Ignition Engine

2017-09-04
2017-24-0141
The aim of the present work is to provide further guidance into better understanding the production mechanisms of soot emissions in Spark-Ignition SI engines fueled with compressed natural gas. In particular, extensive experimental investigations were designed with the aim to isolate the contribution of the fuel from that of lubricant oil to particle emissions. This because the common thought is that particulate emerging from the engine derives mainly from fuel, otherwise the contribute of lubricant oil cannot be neglected or underestimated, especially when the fuel itself produces low levels of soot emissions, such as in the case of premixed natural gas. The fuel-derived contribution was studied by analyzing the influence that natural gas composition has on soot emitted from a single cylinder Spark-Ignition (SI) engine. To achieve this purpose, methane/propane mixtures were realized and injected into the intake manifold of a Single-Cylinder SI engine.
Technical Paper

Particle Formation and Emissions in an Optical Small Displacement SI Engine Dual Fueled with CNG DI and Gasoline PFI

2017-09-04
2017-24-0092
Fuel depletion as well as the growing concerns on environmental issues prompt to the use of more eco-friendly fuels. The compressed natural gas (CNG) is considered one of the most promising alternative fuel for engine applications because of the lower emissions. Nevertheless, recent studies highlighted the presence of ultrafine particle emissions at the exhaust of CNG engines. The present study aims to investigate the effect of CNG on particle formation and emissions when it was direct injected and when it was dual fueled with gasoline. In this latter case, the CNG was direct injected and the gasoline port fuel injected. The study was carried out on a transparent single cylinder SI engine in order to investigate the in-cylinder process by real time non-intrusive diagnostics. In-cylinder 2D chemiluminescence measurements from UV to visible were carried out.
Technical Paper

CFD Analysis of the Combustion Process in Dual-Fuel Diesel Engine

2018-04-03
2018-01-0257
Dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. The dual-fuel (diesel/natural gas) concept represents a possible solution to reduce emissions from diesel engines by using natural gas (methane) as an alternative fuel. Methane was injected in the intake manifold while the diesel oil was injected directly into the engine. The present work describes the results of a numerical study on combustion process of a common rail diesel engine supplied with natural gas and diesel oil. In particular, the aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution. The study of dual-fuel engines that is carried out in this paper aims at the evaluation of the CFD potential, by a 3-dimensional code, to predict the main features of this technology.
X