Refine Your Search

Topic

Author

Search Results

Video

The Challenges of Electrification in Premium Luxury Vehicles

2012-03-27
JLR is on track to develop stop-start, parallel hybrid and plug-in parallel hybrid vehicles in the next few years. Plug-in hybridization is arguably the most suitable technology for large, premium luxury vehicles for the foreseeable future. Range_e is a UK based demonstrator for a plug-in hybrid system and has brought into sharp focus the attribute issues and wider challenges that need to be taken into consideration when moving towards production. Presenter Paul Bostock, Jaguar Land Rover
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

Observations on the Measurement and Performance Impact of Catalyzed vs. Non Catalyzed EGR on a Heavily Downsized DISI Engine

2014-04-01
2014-01-1196
Increasingly stringent regulations and rising fuel costs require that automotive manufacturers reduce their fleet CO2 emissions. Gasoline engine downsizing is one such technology at the forefront of improvements in fuel economy. As engine downsizing becomes more aggressive, normal engine operating points are moving into higher load regions, typically requiring over-fuelling to maintain exhaust gas temperatures within component protection limits and retarded ignition timings in order to mitigate knock and pre-ignition events. These two mechanisms are counterproductive, since the retarded ignition timing delays combustion, in turn raising exhaust gas temperature. A key process being used to inhibit the occurrence of these knock and pre-ignition phenomena is cooled exhaust gas recirculation (EGR). Cooled EGR lowers temperatures during the combustion process, reducing the possibility of knock, and can thus reduce or eliminate the need for over-fuelling.
Journal Article

Analytical and Developmental Techniques Utilized in the Structural Optimization of a New Lightweight Diesel Engine

2015-06-15
2015-01-2298
Jaguar Land Rover (JLR) has designed and developed a new inline 4 cylinder engine family, branded Ingenium. In addition to delivering improved emissions and fuel economy over the outgoing engine, another key aim from the outset of the program was to reduce the combustion noise. This paper details the NVH development of the lead engine in this family, a 2.0 liter common rail turbo diesel. The task from the outset of this new program was to reduce the mass of the engine by 21.5 kg, whilst also improving the structural attenuation of the engine by 5 dB in comparison to the outgoing engine. Improving the structural attenuation by 5 dB was not only a key enabler in reducing combustion noise, but also helped to achieve a certified CO2 performance of 99 g/km in the all-new Jaguar XE model, by allowing more scope for increasing cylinder pressure forcing without compromising NVH.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Journal Article

A New De-throttling Concept in a Twin-Charged Gasoline Engine System

2015-04-14
2015-01-1258
Throttling loss of downsized gasoline engines is significantly smaller than that of naturally aspirated counterparts. However, even the extremely downsized gasoline engine can still suffer a relatively large throttling loss when operating under part load conditions. Various de-throttling concepts have been proposed recently, such as using a FGT or VGT turbine on the intake as a de-throttling mechanism or applying valve throttling to control the charge airflow. Although they all can adjust the mass air flow without a throttle in regular use, an extra component or complicated control strategies have to be adopted. This paper will, for the first time, propose a de-throttling concept in a twin-charged gasoline engine with minimum modification of the existing system. The research engine model which this paper is based on is a 60% downsized 2.0L four cylinder gasoline demonstrator engine with both a supercharger and turbocharger on the intake.
Journal Article

Evaluation of the Aerodynamic and Aeroacoustic Response of a Vehicle to Transient Flow Conditions

2013-04-08
2013-01-1250
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. Unsteady effects occurring in the sideglass region of a vehicle are particularly relevant to wind noise. This is a region close to the driver and dominated by separated flow structures from the A-pillar and door mirrors, which are sensitive to unsteadiness in the onset flow. Since the sideglass region is of particular aeroacoustic importance, the paper seeks to determine what impact these unsteady effects have on the sources of aeroacoustic noise as measured inside the passenger compartment, in addition to the flow structures in this region. Data presented were obtained during on-road measurement campaigns using two instrumented vehicles, as well as from aeroacoustic wind tunnel tests.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Journal Article

EU6c Particle Number on a Full Size SUV - Engine Out or GPF?

2014-10-13
2014-01-2848
This paper describes the findings of a design, simulation and test study into how to reduce particulate number (Pn) emissions in order to meet EU6c legislative limits. The objective of the study was to evaluate the Pn potential of a modern 6-cylinder engine with respect to hardware and calibration when fitted to a full size SUV. Having understood this capability, to redesign the combustion system and optimise the calibration in order to meet an engineering target value of 3×1011 Pn #/km using the NEDC drive cycle. The design and simulation tasks were conducted by JLR with support from AVL. The calibration and all of the vehicle testing was conducted by AVL, in Graz. Extensive design and CFD work was conducted to refine the inlet port, piston crown and injector spray pattern in order to reduce surface wetting and improve air to fuel mixing homogeneity. The design and CFD steps are detailed along with the results compared to target.
Technical Paper

The Effects of Unsteady On-Road Flow Conditions on Cabin Noise

2010-04-12
2010-01-0289
At higher speeds aerodynamic noise tends to dominate the overall noise inside the passenger compartment. Large-scale turbulent conditions experienced on the road can generate different noise characteristics from those under steady-state conditions experienced in an acoustic wind tunnel. The objective of this research is to assess the relationship between on-road flow conditions and the sound pressure level in the cabin. This research, covering links between the unsteady airflow around the vehicle and aeroacoustic effects, is a natural progression from previous aerodynamic studies. On-road testing was undertaken using a current production vehicle equipped with a mobile data logging system. Testing was carried out on major roads at typical highway speeds, where wind noise is very significant. Of particular interest are high-yaw conditions, which can lead to a blustering phenomenon.
Technical Paper

Development of a High Fidelity CAE Model for Predicting Brake System Temperatures

2017-03-28
2017-01-0145
In order to specify a brake system that will have robust performance over the entire range of expected vehicle drive cycles it is vital that it has sufficient thermal inertia and dissipation to ensure that component temperatures are kept within acceptable limits. This paper presents a high fidelity CAE (computer aided engineering) technique for predicting the temperature of the front brake and the surrounding suspension components whilst installed on vehicle. To define the boundary conditions the process utilizes a coupled unsteady CFD (computational fluid dynamics) and thermal solver to accurately predict the convective heat transfer coefficients across a range of vehicle speeds. A 1-D model is used to predict the brake energy inputs as well as the vehicle speed-time curves during the drive cycle based on key vehicle parameters including wide-open-throttle performance, drive train losses, rolling resistance, aerodynamic drag etc.
Technical Paper

Full Vehicle Aero-Thermal Cooling Drag Sensitivity Analysis for Various Radiator Pressure Drops

2016-04-05
2016-01-1578
Simulations are presented which fully couple both the aerodynamics and cooling flow for a model of a fully engineered production saloon car (Jaguar XJ) with a two-tier cooling pack. This allows for the investigation of the overall aerodynamic impact of the under-hood cooling flow, which is difficult to predict experimentally. The simulations use a 100 million-element mesh, surface wrapped and solved to convergence using a commercially available RANS solver (STARCCM+). The methodology employs representative boundary conditions, such as rotating wheels and a moving ground plane. A review is provided of the effect of cooling flows on the vehicle aerodynamics, compared to published data, which suggest cooling flow accounts for 26 drag counts (0.026 Cd). Further, a sensitivity analysis of the pressure drop curves used in the porous media model of the heat exchangers is made, allowing for an initial understanding of the effect on the overall aerodynamics.
Technical Paper

Comparing the Effect of Fuel/Air Interactions in a Modern High-Speed Light-Duty Diesel Engine

2017-09-04
2017-24-0075
Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
Technical Paper

An Optical Study of DMF and Ethanol Combustion Under Dual-Injection Strategy

2012-04-16
2012-01-1237
The new fuel, 2, 5-dimenthylfuran, known as DMF, captured worldwide attention since the discovery of its new production method. As a potential bio-fuel, DMF is competitive to gasoline in many areas, such as energy density, combustion efficiency and emissions. However, little work has been performed on its unconventional combustion mode. In this work, high speed imaging and thermal investigation are carried out to study DMF and gasoline dual-injection on a single cylinder, direct injection spark ignition optical engine. This dual-injection strategy combines direct injection (DI) and port fuel injection (PFI) simultaneously which means two different fuels can blend in the cylinder with any ratio. It provides a flexible way to use bio-fuels with gasoline. DMF DI with gasoline PFI and ethanol DI with gasoline PFI are studied under different injection proportions (by volume) and IMEPs.
Technical Paper

Prediction of Vehicle Interior Sound Pressure Distribution with SEA

2011-05-17
2011-01-1705
Statistical Energy Analysis (SEA) is the standard analytical tool for predicting vehicle acoustic and vibration responses at high frequencies. SEA is commonly used to obtain the interior Sound Pressure Level (SPL) due to each individual noise or vibration source and to determine the contribution to the interior noise through each dominant transfer path. This supports cascading vehicle noise and vibration targets and early evaluation of the vehicle design to effectively meet NVH targets with optimized cost and weight. A common misconception is that SEA is only capable of predicting a general average interior SPL for the entire vehicle cabin and that the differences between different locations such as driver's ear, rear passenger's ear, lower interior points, etc., in the vehicle cannot be analytically determined by an SEA model.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

Active Grille Shutters Control and Benefits in Medium to Large SUV: A System Engineering Approach

2020-04-14
2020-01-0945
Whilst the primary function of the active grille shutters is to reduce the aerodynamic drag of the car, there are some secondary benefits like improving the warm up time of engine and also retaining engine heat when parked. In turbocharged IC engines the air is compressed (heated) in the turbo and then cooled by a low temperature cooling system before going into the engine. When the air intake temperature exceeds a threshold value, the engine efficiency falls - this drives the need for the cooling airflow across the radiator in normal operation. Airflow is also required to manage the convective heat transfer across various components in the engine bay for its lifetime thermal durability. Grill shutters can also influence the aerodynamic lift balance thus impacting the vehicle dynamics at high speed. The vehicle HVAC system also relies on the condenser in the front heat exchanger pack disposing the waste heat off in the most efficient way.
Technical Paper

Comparing the Effect of a Swirl Flap and Asymmetric Inlet Valve Opening on a Light Duty Diesel Engine

2017-10-08
2017-01-2429
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
Technical Paper

Method Development and Application of Thermal Encapsulation to Reduce Fuel Consumption of Internal Combustion Powertrains

2019-04-02
2019-01-0902
Under bonnet thermal encapsulation is a method for retaining the heat generated by a running powertrain after it is turned off. By retaining the heat in the engine bay, the powertrain will be closer to its operating temperatures the next time it is started, reducing the warm up time required. This reduces the period of inefficiency due to high friction losses before the engine reaches it operating temperature, and as a result reduces the vehicles fuel consumption and CO2 emissions. To develop an integrated and efficient encapsulation design, CAE methods can be applied to allow this work stream to start as early in a vehicles development cycle as possible. In this work, the existing test methods are discussed, and a new Thermal CFD method is presented that accurately simulates the fluid temperatures after a customer representative 9 hour park period.
Technical Paper

Effect of Liquid Break-Up Model Selection on Simulated Diesel Spray and Combustion Characteristics

2021-04-06
2021-01-0546
Accurate modelling for spray vapour fields is critical to enable adequate predictions of spray ignition and combustion characteristics of non-premixed reacting diesel sprays. Spray vapour characteristics are in turn controlled by liquid atomization and the KH-RT liquid jet break-up model is regularly used to predict this: with the KH model used for predicting primary break-up given its definition as a surface wave growth model, and the RT model used for predicting secondary break-up due to it being a drag based, stripping model. This paper investigates how the alteration of the switching position of the KH and RT sub-models within the KH-RT model impacts the resulting vapour field and ignition characteristics. The combustion prediction is handled by the implementation of a 54 species, 269 reaction skeletal mechanism utilising a Well Stirred Reactor model within the Star-CD CFD code.
X