Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Construction of an ISO 26262 C Class Evaluation Method for Motorcycles

2016-11-08
2016-32-0059
For applying ISO 26262 to motorcycles, controllability classification (C class evaluation) by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests while observing safety restrictions (such as avoiding the risk of falling). Moreover, expert riders can ride safely and can stably evaluate motorcycle performance even if the test conditions are close to the limits of vehicle performance. This study aims to construct a motorcycle C class evaluation method based on an expert rider’s subjective evaluation. On the premise that expert riders can rate the C class, we improved a test procedure that used a subjective evaluation sheet as the concrete C class evaluation method for an actual hazardous event.
Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Journal Article

Research on Method for Classifying Injury Severity Using Motorcycle Accident Data for ISO 26262

2015-11-17
2015-32-0714
ISO 26262 was established in 2011 as a functional safety standard for passenger cars. In this standard, ASILs (Automotive Safety Integrity Levels) representing safety levels for passenger cars are determined by evaluating the hazardous events associated with each item constituting an electrical and/or electronic safety-related system according to three evaluation criteria including injury severity. On the other hand, motorcycles will be included in the scope of application of ISO 26262 in the next revision. It is expected that a severity evaluation for motorcycles will be needed because motorcycles are clearly different from passenger cars in vehicle mass and structure. Therefore, this study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data.
Journal Article

Examination of the Validity of Connections between MSILs and ASILs in the Functional Safety Standard for Motor Vehicles

2015-11-17
2015-32-0794
ISO 26262, a functional safety standard for motor vehicles, was published in November 2011. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply automotive safety integrity levels (ASILs) to motorcycles because the situation of usage in practice presumably differs between motorcycles and motor vehicles. In our previous study, we newly defined safety integrity levels for motorcycles (MSILs) and proposed that the levels of MSILs should correspond to levels one step lower than those of ASILs; however, we did not investigate the validity of their connections. Accordingly, in this research, we validated the connections. We defined the difference of levels of SILs between motorcycles and motor vehicles as the difference of target values of random hardware failure rates specified in ISO 26262-5.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Data Processing Method of Finger Blood Pulse for Estimating Human Internal States

1998-02-23
980016
It was found that the finger blood pulse shows various fluctuations in different driving conditions. The nature of the finger blood pulse fluctuations was used for estimating a driver's internal state. Indexes suitable for expressing the fluctuations were moment and density; these indexes were calculated by using a return-map. However these results were measured by an off-line system and were calculated after the experiment. So, an on-line (real-time) system was needed in order to construct a driver's internal state monitoring system. As a first step, an online system for estimating the human internal state was developed. This system is available for estimating the human internal state every 30 seconds.
Technical Paper

Development of Fuel Consumption Measurement Method for Fuel Cell Vehicle - Flow Method corresponding to Pressure Pulsation of Hydrogen flow -

2007-07-23
2007-01-2008
Japan Automobile Research Institute (JARI) have developed the flow method as an easy way of measuring hydrogen consumption of fuel cell vehicles (FCVs) in real-time. A 2004 study on fuel consumption of five models of FCVs, measured by thermal flowmeters and based on gravimetric method, exhibited measurement errors within ±1% range for three models, but the errors were as large as -8% for two models that showed significant pulsation in hydrogen consumption flow. Assuming that the pulsation is the cause of errors in the flow method, we analyzed influences of pulsation in each flowmeter from two points (frequency and amplitude) and found that pulsation indeed caused flowmeter errors. Expansion chambers (Buffers) and throttle valves (regulators) were confirmed to have an effect in attenuating pulsation. Amplitude of pulsation shrunk to one tenths when such pulsation-reducing instruments were introduced between pulsating FCVs and flowmeters and were put to test.
Technical Paper

Oxidation Degradation and Acid Generation in Diesel Fuel Containing 5% FAME

2007-07-23
2007-01-2027
Compared with diesel fuel, FAME is relatively unstable and readily generates acids such as acetic acid and propionic acid. When FAME-blended diesel fuel is used in existing diesel vehicles, it is important to maintain the concentration of FAME-origin acid in the fuel at an appropriately low level to assure vehicle safety. In the present study, the oxidation of diesel fuel containing 5% FAME is investigated. Several kinds of FAMEs were examined, including reagents such as methyl linoleate and methyl linolenate, as well as commercially available products. The level of acid, peroxide, water, and methanol and the pressure of the testing vessel were measured. The result shows that unsaturated FAMEs that have two or more double bonds are unstable. Also, water is generated by oxidation of FAME blended diesel fuel, accelerating corrosion of the terne sheet.
Technical Paper

Safety Evaluation on Fuel Cell Stacks Fire and Toxicity Evaluation of Material Combustion Gas for FCV

2007-04-16
2007-01-0435
Fuel cell vehicles represent a new system, and their safety has not yet been fully proved comparing with present automobile. Thorough safety evaluation is especially needed for the fuel system, which uses hydrogen as fuel, and the electric system, which uses a lot of electricity. The fuel cell stacks that are to be loaded on fuel cell vehicles generate electricity by reacting hydrogen and oxygen through electrolytic polymer membranes which is very thin. The safety of the fuel and electric systems should also be assessed for any abnormality that may be caused by electrolytic polymer membranes for any reasons. The purpose of our tests is to collect basic data to ultimately establish safety standards for fuel cell stacks. Methanol pool flame exposure tests were conducted on stationary use fuel cell stacks of two 200W to evaluate safety in the event of a fire.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling

2007-04-16
2007-01-0688
The current hydrogen storage systems for fuel-cell vehicles are mainly a compressed hydrogen storage type, but it is known that the temperature inside the tank commonly increases while the tank is being filled with hydrogen. This study examines filling methods that prevent the temperature from exceeding the designed temperature of the tank. In order to propose a filling method that suppresses the temperature rise inside the tank and achieves filling within a short time, fast-filling tests were conducted on test tanks designed for fast filling of fuel cell vehicles. The detailed influences of the differences in type of tank and filling pressure on the rate of the internal temperature increase were investigated. Thermal responses were measured at various parts inside and outside the tank while varying the filling pressure, type of tank, tank capacity, filling time, and filling pattern, using a test tank that allows multi-point measurement of the internal temperature.
Technical Paper

Calculation of Hydrogen Consumption for Fuel Cell Vehicles by Exhaust Gas Formulation

2008-04-14
2008-01-0465
The hydrogen consumption of fuel cell vehicles (FCV) can be measured by the gravimetric, pressure and flow methods within a ±1% error. These are the methods acknowledged by ISO and SAE [1, 2], but require the test vehicles to be modified in order to supply hydrogen from an external, rather than the onboard tank. Consequently, technical assistance of the vehicle manufacturer is necessary for this modification, while various components in the test vehicle must be readjusted. For these reasons, a measurement method free of vehicle modification is in great demand. The present study therefore developed an “oxygen balance method” which determines the amount of hydrogen that has reacted with oxygen in the fuel cell stack by measuring the oxygen concentration in exhaust gas.
Technical Paper

Study on Reliable Automotive Exhaust Acrolein Collection Method

2010-10-25
2010-01-2207
Aldehydes and ketones are known as one of the hazardous air pollutants. Usually, acidified 2,4-dinitrophenylhydrazine (DNPH) solution, or DNPH-impregnated cartridges are used for automotive exhaust carbonyls collection. Then, aldehydes and ketones combined with DNPH are analyzed by HPLC/UV (High Performance Liquid Chromatography/ Ultra Violet Detection). DNPH cartridge is used widely for a good point of the handling although handling of DNPH solution is not so convienient. However, the analytical result of acrolein using DNPH cartridge was known as the low reliability. Acrolein-DNPH is changed to acrolein-DNPH-DNPH in the cartridge with acid atmosphere before extraction. And then, acrorein-DNPH-DNPH is changed to acrorein-DNPH-DNPH-DNPH with an acid atmosphere. As a result of such chemical reaction before extraction, the acrolein-DNPH is detected to low concentration. We found that at the low temperature condition, acrolein-DNPH concentration decrease speed is held down.
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2010-04-12
2010-01-0131
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 10 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards associated with the integration of hydrogen and electrical systems onto the vehicle and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. An update to SAE J1766 for post-crash electrical safety was also published in 2008 to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to SAE J2578 and J1766, the SAE FCV Safety Working Group also developed a Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Lubricity of Liquefied Gas - Assessment of the Various Pressure and Temperature High-Frequency Reciprocating Rig (VPT-HFRR) - LPG Blended Fuel for Diesel Engine

2003-10-27
2003-01-3092
In this research, a test apparatus (VPT-HFRR) for evaluating lubricity was manufactured at an arbitrary pressure according to the lubricity test method (HFRR) for diesel fuel. The lubricity of LPG blended fuel (LBF) for diesel engines was examined using VPT-HFRR., This was a value close to that of diesel fuel, and when a suitable lubricity had been maintained, it was checked. Prototype trucks were manufactured and their durability was examined. After a run of 70,000km or more, no serious trouble had occurred, and when LBF was maintained at a suitable lubricity, it was checked.
Technical Paper

Energy Absorption Properties of FRP tube under Commission Load

2003-10-27
2003-01-2778
Tapered FRP tubes have high-energy absorption performance under axial compressive load. FRP will be useful for structural material of a shock absorber in the various industries. And in order to simulate the behavior of this material, several experimental tests and numerical simulations using FEM have been carried out recently. However, it is still difficult to simulate the behavior of tapered FRP tubes involving so called “Progressive Crushing” with FEM properly, because the fracture mechanism contains various kinds of fractures such as delamination, fiber fracture and so on. In this study, we proposed a specially designed FEM model based that is useful for the crush-worthiness analysis of FRP tube.
Technical Paper

Development of an FE Flexible Pedestrian Leg-form Impactor (Flex-PLI 2003R) Model and Evaluation of its Biofidelity

2004-03-08
2004-01-1609
A biofidelic flexible pedestrian leg-form impactor, called Flex-PLI, was developed by the Japan Automobile Manufactures Association, Inc. (JAMA) and the Japan Automobile Research Institute (JARI). Its latest version is called Flex-PLI 2003. The Flex-PLI 2003 responses have been validated at the component level (thigh, leg, and knee independently) but not at the assembly level (thigh-knee-leg complex). Furthermore, there was no FE Flex-PLI model. This research developed a FE Flex-PLI 2003R model (Flex-PLI 2003R means that the thigh and leg mass of Flex-PLI 2003 is adjusted to AM 50). The FE Flex-PLI 2003R model biofidelity has been evaluated at both the component level and the assembly level, where it demonstrated high biofidelity.
Technical Paper

Lubricity of Liquefied Gas Assessment of Multi-Pressure/Temperature High-Frequency Reciprocating Rig (MPT-HFRR) -DME Fuel for Diesel

2004-06-08
2004-01-1865
In this study, a MPT-HFRR (Multi-Pressure/Temperature High-Frequency Reciprocating Rig) was manufactured based on a diesel fuel lubricity test apparatus. The MPT-HFRR was designed to be used for conventional test methods as well as for liquefied gas fuel tests. Lubricity tests performed on a calibration standard sample under both atmospheric pressure and high pressure produced essentially constant values, so it was determined that this apparatus could be used for assessing the lubricity of fuel. Using this apparatus, the improvement of lubricity due to the addition of a DME (Dimethyl Ether) fuel additive was investigated. It was found that when 50ppm or more of a fatty acid lubricity improver was added, the wear scar diameter converged to 400μm or less, and a value close to the measured result for Diesel fuel was obtained. The lubricity obtained was considered to be generally satisfactory.
X