Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Mixing-Controlled, Low Temperature Diesel Combustion with Pressure Modulated Multiple-Injection for HSDI Diesel Engine

2010-04-12
2010-01-0609
This paper proposes a new mixing-controlled, low temperature combustion (LTC) approach for high-speed direct injection (HSDI) diesel engines. The purpose of this approach is to avoid the excessively high pressure-rise rate (PRR) of premixed, kinetics-controlled LTC and to enable the low nitrogen oxides (NOx) combustion to operate over the wide speed and load range of the engine. To address the soot/noise trade-off at high load LTC operating conditions, the pressure modulated multiple-injection coupled with swirl control was applied. This injection strategy enables the injection of high pressure (HP) main spray into the local high temperature region of the already burning low pressure (LP) pilot spray injected from the neighboring injection hole. By employing this injection strategy, the equivalence ratio (φ) distribution of mixture is drastically varied during main combustion processes.
Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

2013-04-08
2013-01-1627
An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Journal Article

Very High Cycle Fatigue of Cast Aluminum Alloys under Variable Humidity Levels

2015-04-14
2015-01-0556
Ultrasonic fatigue tests (testing frequency around 20 kHz) have been conducted on four different cast aluminum alloys each with a distinct composition, heat treatment, and microstructure. Tests were performed in dry air, laboratory air and submerged in water. For some alloys, the ultrasonic fatigue lives were dramatically affected by the environment humidity. The effects of different factors like material composition, yield strength, secondary dendrite arm spacing and porosity were investigated; it was concluded that the material strength may be the key factor influencing the environmental humidity effect in ultrasonic fatigue testing. Further investigation on the effect of chemical composition, especially copper content, is needed.
Technical Paper

Comparative Research on Emission Characteristic and Combustion Characteristic of Gasoline Direct Injection and Port Fuel Injection for Free-Piston Linear Generator

2020-09-15
2020-01-2220
As a new type of energy, free-piston linear generator (FPLG) attracts more research on its stable operation and power performance, while less on its combustion and emission performance. So, in this paper, the emission characteristics of FPLG in two different modes are studied through a port fuel injection (PFI) mode which was verified by the experiment and a gasoline direct injection (GDI) mode. The results showed that: both the GDI mode and the PFI mode produced large amounts of nitrogen oxide (NOx) during the working process. But the GDI mode produced before the PFI mode and it produced nearly 2 times than the PFI mode. However, the formation rate of NOx in GDI mode is much lower than that in PFI mode. Meanwhile, in both modes, 90% of NOX was generated in the cylinder at the temperature higher than 1750K, and only about 10% of NOX was generated at a temperature lower than 1750K.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

Experimental and Kinetic Investigation of Pressure and Temperature Effects on Burning Characteristics of n-Heptane/Air/Hydrogen up to Near Lean Burn Limits

2020-04-14
2020-01-0343
Incomplete-combustion and misfire are the hurdles in internal combustion engines to run on ultra-lean mixture, whereas high thermal efficiency has been achieved at lean mixture. The burning characteristics of n-heptane with 0% and 30% hydrogen additions were studied at 393K-453K and 100kPa-300kPa up to near lean burn limits, λ=0.8-2.0. The flame appeared in spherical shape only by 37-mJ ignition energy (IE) at λ=0.8-1.5, while further lean mixture, ≥1.6, could be ignited only by 3000-mJ with the distorted flame shape. The flame buoyed in the mixture when burning velocity calculated by kinetic mechanism was equal or less than 19.83 cm/s at the initial conditions of λ=1.8, 393K and 100kPa. The thermal instability under impact of initial pressure and temperature was higher at lean mixture than at stoichiometric mixture.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Journal Article

An Experimental Study on the Fire Response of Vehicles with Compressed Hydrogen Cylinders

2010-04-12
2010-01-0134
To investigate the events that could arise when fighting fires in vehicles with carbon fiber reinforced plastic (CFRP) hydrogen storage cylinders, we conducted experiments to examine whether a hydrogen jet diffusion flame caused by activation of the pressure relief device (PRD) can be extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles.
Journal Article

Numerical Optimization on a Centrifugal Turbocharger Compressor

2008-06-23
2008-01-1697
Performances of a centrifugal turbocharger compressor are investigated and validated in this paper. Based on the validation results, numerical optimizations are performed using ANN and CFD methods. Different impeller geometry with free parameters controlling stacking laws, end-wall, blade sectional camber curves and corresponding performances are used as input layer of ANN in the optimization, while adiabatic total-to-total efficiency and total pressure ratio are used as output layer of the optimization cycle. With this method, the performances of the compressor investigated in this paper are improved notably.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Journal Article

Correlation between Scatter in Fatigue Life and Fatigue Crack Initiation Sites in Cast Aluminum Alloys

2012-04-16
2012-01-0920
High cycle fatigue tests at a constant positive mean stress have been performed on a Al-Si-Cu cast aluminum alloy. The Random Fatigue Limit (RFL) model was employed to fit the probabilistic S-N curves based on Maximum Likelihood Estimate (MLE). Fractographic studies indicated that fatigue cracks in most specimens initiate from oxide films located at or very close to specimen surface. The RFL model was proved to be able to accurately capture the scatter in fatigue life. The cumulative density function (CDF) of fatigue life determined by RFL fit is found to be approximately equal to the complementary value of the CDF of the near-surface fatigue initiator size.
Journal Article

Development and Characteristics of a Burner for Localized Fire Tests and an Evaluation of Those Fire Tests

2012-04-16
2012-01-0987
We have developed a new propane burner that satisfies the requirements of localized fire test which was presented in SAE technical paper 2011-01-0251. This paper introduces the specifications of this burner and reports its characteristics as determined from various fire exposure tests that we conducted in order to gather data. These tests included temperature and heat flux distribution on cylinder surfaces, which would be useful for the design of automotive compressed fuel cylinders. Our fire exposure tests included localized and engulfing fire tests to compare TPRD activation time, cylinder burst pressure and other parameters between different flame configurations and tests to identify the effects of an automotive compressed fuel cylinder on localized fire test results.
Journal Article

Optimized AHSS Structures for Vehicle Side Impact

2012-04-16
2012-01-0044
Advanced high strength steels (AHSS) have been widely accepted as a material of choice in the automotive industry to balance overall vehicle weight and stringent vehicle crash test performance targets. Combined with efficient use of geometry and load paths through shape and topology optimization, AHSS has enabled vehicle manufacturers to obtain the highest possible ratings in safety evaluations by the Insurance Institute for Highway Safety (IIHS) and the National Highway Traffic Safety Administration (NHTSA). In this study, vehicle CAE side impact models were used to evaluate three side impact crash test conditions (IIHS side impact, NHTSA LINCAP and FMVSS 214 side pole) and the IIHS roof strength test condition and to identify several key components affecting the side impact test performance. HyperStudy® optimization software and LS-DYNA® nonlinear finite element software were utilized for shape and gauge optimization.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Journal Article

Combustion and Emission Characteristics of a Heavy-Duty Diesel Engine at Idle at Various Altitudes

2013-04-08
2013-01-1516
This present paper described an experimental study on the combustion and emission characteristics of a diesel engine at idle at different altitudes. Five altitudes ranging from 550m to up to 4500m were investigated. Combustion parameters including in-cylinder pressure and temperature, heat release, fuel mass burning and so forth, together with emission factors including CO, HC, NOx and PM were tested and analyzed. The result of on-board measurement manifested that in-cylinder pressure descended consistently with the rising of altitude, while both the maximum in-cylinder temperature and exhaust temperature ascended with the altitude. It was found that ignition delay was lengthened at higher altitude, but the combustion duration became shorter. The crank angle towards 90% fuel burnt has hardly changed with the variation of altitude. As for heat release, the difference of slopes observed at different altitudes was quite slight.
Journal Article

Development of Corrosion Testing Protocols for Magnesium Alloys and Magnesium-Intensive Subassemblies

2013-04-08
2013-01-0978
Corrosion tendency is one of the major inhibitors for increased use of magnesium alloys in automotive structural applications. Moreover, systematic or standardized methods for evaluation of both general and galvanic corrosion of magnesium alloys, either as individual components or eventually as entire subassemblies, remains elusive, and receives little attention from professional and standardization bodies. This work reports outcomes from an effort underway within the U.S. Automotive Materials Partnership - ‘USAMP’ (Chrysler, Ford and GM) directed toward enabling technologies and knowledge base for the design and fabrication of magnesium-intensive subassemblies intended for automotive “front end” applications. In particular, subassemblies consisting of three different grades of magnesium (die cast, sheet and extrusion) and receiving a typical corrosion protective coating were subjected to cyclic corrosion tests as employed by each OEM in the consortium.
Technical Paper

Evaluation of Regulated Materials and Ultra Fine Particle Emission from Trial Production of Heavy-Duty CNG Engine

2006-10-16
2006-01-3397
A prototype CNG engine for heavy-duty trucks has been developed. The engine had sufficient output in practical use, and the green-house gas emission rate was below that of the base diesel engine. Furthermore, the NOx emission rate was reduced to 0.16 g/kWh in the JE05 mode as results of having fully adjusted air fuel ratio control. The measured emission characteristics of particles from the prototype CNG engine demonstrated that oil consumption was related to the number of particles. Moreover, when oil consumption is at an appropriate level, the accumulation mode particles are significantly reduced, and the nuclei mode particles are fewer than those of diesel-fueled engines.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
X