Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Exhaust Gas Sensor with High Water Splash Resistant Layer for Lower Emission

2020-04-14
2020-01-0565
Increasingly stringent regulations call for the reduction of emissions at engine startup to purify exhaust gas and reduce the amount of CO2 emitted. Air-fuel ratio (A/F) sensors detect the composition of exhaust gas and provide feedback to control the fuel injection quantity in order to ensure the optimal functioning of the catalytic converter. Reducing the time needed to obtain feedback control and enabling the restriction-free installation of A/F sensors can help meet regulations. Conventional sensors do not activate feedback control immediately after engine startup as the combination of high temperatures and splashes of condensed water in the exhaust pipe can cause thermal shock to the sensor element. Moreover, sensors need to be installed near the engine to increase the catalyst reaction efficiency. This increases the possibility of water splash from the condensed water in the catalyst.
Technical Paper

Low-Emission and Fuel-Efficient Exhaust System with New Air-Fuel Ratio Sensor

2020-04-14
2020-01-0655
This paper describes an exhaust system using a new air-fuel ratio (hereinafter, A/F) sensor that contributes to low emissions and low fuel consumption of gasoline engines. As the first technical feature, the water splash resistance of the A/F sensor has been substantially improved which allows A/F control to be enabled without delay during engine cold start. To realize this capability, it is important that the sensor characteristics are not affected by the condensed water generated in the exhaust pipe. Therefore, a technique that has the effectiveness of a water splash resistance layer with water repellent function is demonstrated. As the second technical feature, the power consumption of the sensor has been substantially reduced. This is achieved by improving thermal efficiency of the sensor that the element can be activated at a low temperature.
Journal Article

Development of a Fuel Economy and Exhaust Emissions Test Method with HILS for Heavy-Duty HEVs

2008-04-14
2008-01-1318
The objective of this study was to develop a test method for heavy-duty HEVs using a hardware-in-the-loop simulator (HILS) to enhance the type-approval-test method. To achieve our objective, HILS systems for series and parallel HEVs were actually constructed to verify calculation accuracy. Comparison of calculated and measured data (vehicle speed, motor/generator power, rechargeable energy storage system power/voltage/current/state of charge, and fuel economy) revealed them to be in good agreement. Calculation error for fuel economy was less than 2%.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
Technical Paper

Development of Diesel Particulate Trap Systems for City Buses

1991-02-01
910138
Diesel particulate trap systems are one of the effective means for the control of particulate emission from diesel vehicles. Hino has been researching and developing various diesel particulate trap systems for city buses. This paper describes two of the systems. One uses a wall flow filter equipped with an electric heater and a sensing device for particulate loading for the purpose of filter regeneration. Another makes use of a special filter named “Cross Flow Filter” with an epoch-making regeneration method called “Reverse Jet Cleaning”, by which it becomes possible to separate the part for particulate burning from the filter. Both systems roughly have come to satisfy the functions of trap systems for city buses, but their durability and reliability for city buses are not yet sufficient.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Performance of Two/Four Stroke Gasoline HCCI Engine with Electromagnetic Valve Train

2007-07-23
2007-01-1868
Comparison of net thermal efficiency and emission in two and four stroke gasoline HCCI engine has been carried out for various valve-timings as negative valve overlap and exhaust valve double opening. The valve timings could easily be converted from a mode to another by configuring schedule of electromagnetic valve-train. Extension of operable torque with high thermal efficiency had been expected in two-stroke HCCI operation, however friction and supercharger loss curtailed about half of the gain in indicated thermal efficiency. In four-stroke operation modes, exhaust valve double opening (‘reinduction’ or ‘rebreathing’) showed the best net thermal efficiency and emission, however the extension of high load limit could not be achieved considerably.
Technical Paper

Study of a Two-Degree-of-Freedom Exhaust System

1990-02-01
900164
An investigation was conducted into pressure pulsation in the exhaust port, which greatly affects volumetric efficiency and engine performance. From experiments using a single blow-down generator, it was established that the amplitude of the pressure pulsation increases as the manifold branch is lengthened and that large negative pressure synchronized with the timing of valve overlap can be obtained if a proper branch length is used. The performance of a 2ℓ test engine was optimized by varying the length of both the manifold branches and front pipe forks. It was found that whereas front pipe fork length affects engine performance over only a narrow range of engine speed, optimizing manifold branch length results in a considerable improvement over a wide engine speed range. In the course of optimizing the exhaust pipe manifold length of this two-degree-of-freedom exhaust system, abnormal exhaust noises were emitted at specific engine speeds during deceleration.
Technical Paper

Exhaust Emissions Simulator for Verification of Extremely Low Emission Measurement Systems

2007-04-16
2007-01-0316
With the support of Horiba and Horiba STEC, Toyota Motor Corporation has developed an exhaust emissions simulator to verify the accuracy of extremely low emissions measurement systems. It can reliably verify the accuracy (correlation) of each SULEV emission measurement system to within 5% under actual conditions. The simulator's method of simulating SULEV gasoline engine cold-start emissions is to inject bottled gases with known concentrations of each emission constituent to the base gas, which is clean exhaust gas from a SULEV vehicle with new fully warmed catalysts. First, the frequencies and dynamic ranges of the SULEV cold-start emissions were analyzed and the method of 2 injecting the bottled gases was considered based on the results of that analysis. A high level of repeatability and accuracy was attained for all injection flow ranges in the SULEV cold-start emission simulation by switching between high-response digital Mass Flow Controllers (MFCs) of different full scales.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

Development of High Performance Three-Way-Catalyst Technology to Lower NOx Emission

2009-04-20
2009-01-1398
One primary result of the reduction of platinum group metals (PGM) within a catalytic converter is the decline in NOx conversion efficiency. This paper hypothesizes that the primary factor of this decline to be hydrocarbon (HC) poisoning. To maintain high NOx conversion efficiency as the PGM reduces, Rh activation improvement becomes significant to overcome the HC poisoning. Analysis of the Rh deterioration mechanism found that it is effective to separately arrange Rh and CeO2 on the converter, avoiding the Rh deactivation. By this improvement, we improved the catalyst activity at less than 25% of the original Rh loading.
Technical Paper

Analysis of Sophisticated DPNR Catalyst, Focused on PM Particle Number Emissions

2009-04-20
2009-01-0290
Diesel particulate and NOx reduction system (DPNR) is an effective technology for the diesel after-treatment system, which can reduce particulate matter (PM) and nitrogen oxides (NOx) simultaneously. Further improvement of the DPNR is expected for cleaner air in the future. The catalyst for the DPNR (called DPNR catalyst) consists of a NOx Storage Reduction (NSR) catalyst coated onto a Diesel Particulate Filter (DPF). The development of the DPNR catalyst for the decrease of exhaust weight has been considered before now with respect to the PM combustion. But it will be necessary to focus on PM particle number emissions in the future. In this study, the relationship between the pore structure of the DPNR catalyst and the trapping of PM to lower particle number was clarified by evaluating a high-porosity, large-pore cordierite DPF with an average pore size of 20 μm or greater. Furthermore, the optimal pore structure to trap PM particles in a highly effective manner was discussed.
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

2008-10-06
2008-01-2494
Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Development of a New DPNR Catalyst

2004-03-08
2004-01-0578
We, at Toyota, have been working to develop a new DPNR (Diesel Particulate-NOx Reduction) system to decrease both PM and NOx emissions by combining the NOx storage-reduction catalyst for direct injection gasoline engines with the most advanced engine control technologies. The purpose of the DPNR catalyst is to decrease PM and NOx in order to purify automotive exhaust gas. To reduce PM emissions, the PM trapping rate and PM oxidizing performance must be improved. Since the deposition of PM increases the pressure drop across the catalytic converter, it should also be suppressed. To attain these objectives, we have developed a new DPNR catalyst by the adoption of a new porous substrate structure and the improvement of the catalyst coating technique. The new DPNR catalyst will be mounted on the Avensis for commercial use in the European market.
Technical Paper

New Cordierite Diesel Particulate Filter Material for the Diesel Particulate - NOx Reduction System.

2004-03-08
2004-01-0953
The regulation of emissions discharged from diesel engines has become stricter worldwide. The regulatory values allowed for particulate matter (PM) as well as NOx will be lowered, especially in the Europe Euro 5, the U.S. EP 07, and the new Japanese long-term regulations. Since there is a tradeoff between the PM and NOx that are discharged from diesel engines, new emission reduction measures will be needed in order to greatly reduce both at the same time. By coating DPFs (Diesel Particulate Filters), which have been studied before, with NOx storage reduction catalysts, it has been found that simultaneous reduction of PM and NOx is possible, and so research was carried out in order to optimize a DPF for this type of system use. The DPF developed was used in the European DPNR (Diesel Particulate-NOx Reduction System) subject vehicles by Toyota Motor Corporation, and actual trial runs in Europe were performed.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

Impact of Oil-derived Ash on Continuous Regeneration-type Diesel Particulate Filter - JCAPII Oil WG Report

2004-06-08
2004-01-1887
Impact of oil-derived ash on the pressure drop of continuous regeneration-type diesel particulate filter (CR-DPF) was investigated through 600hrs running test at maximum power point on a 6.9L diesel engine, which meets the Japanese long-term emission regulations enacted in 1998, using approximately 50ppm sulfur content fuel. Sulfated ash content of test oils were varied as 0.96, 1.31, and 1.70 mass%, respectively. During the running test, the exhaust pressure drop through CR-DPF was measured. And after the test, the ventilation resistance through CR-DPF was also evaluated before and after the baking process, which was applied to eliminate the effect of soot accumulated in CR-DPF. The results revealed that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF. According to microscope examination of the baked DPF, ash was mainly accumulated on the wall surface of CR-DPF, and that seemed to be related to the magnitude of pressure drop caused by ash.
X