Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Mixing-Controlled, Low Temperature Diesel Combustion with Pressure Modulated Multiple-Injection for HSDI Diesel Engine

2010-04-12
2010-01-0609
This paper proposes a new mixing-controlled, low temperature combustion (LTC) approach for high-speed direct injection (HSDI) diesel engines. The purpose of this approach is to avoid the excessively high pressure-rise rate (PRR) of premixed, kinetics-controlled LTC and to enable the low nitrogen oxides (NOx) combustion to operate over the wide speed and load range of the engine. To address the soot/noise trade-off at high load LTC operating conditions, the pressure modulated multiple-injection coupled with swirl control was applied. This injection strategy enables the injection of high pressure (HP) main spray into the local high temperature region of the already burning low pressure (LP) pilot spray injected from the neighboring injection hole. By employing this injection strategy, the equivalence ratio (φ) distribution of mixture is drastically varied during main combustion processes.
Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Journal Article

High-Speed Observation and Modeling of Dimethyl Ether Spray Combustion at Engine-Like Conditions

2015-09-01
2015-01-1927
Dimethyl Ether (DME) is one of the major candidates for the alternative fuel for compression ignition (CI) engines. However, DME spray combustion characteristics are not well understood. There is no spray model validated against spray experiments at high-temperature and high-pressure relevant to combustion chambers of engines. DME has a lower viscosity and lower volumetric modulus of elasticity. It is difficult to increase injection pressure. The injection pressure remains low at 60 MPa even in the latest DME engine. To improve engine performance and reduce emissions from DME engines, establishing the DME spray model applicable to numerical engine simulation is required. In this study, high-speed observation of DME sprays at injection pressures up to 120 MPa with a latest common rail DME injection system was conducted in a constant volume combustion vessel, under ambient temperature and pressure of 6 MPa-920 K.
Journal Article

Construction of an ISO 26262 C Class Evaluation Method for Motorcycles

2016-11-08
2016-32-0059
For applying ISO 26262 to motorcycles, controllability classification (C class evaluation) by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests while observing safety restrictions (such as avoiding the risk of falling). Moreover, expert riders can ride safely and can stably evaluate motorcycle performance even if the test conditions are close to the limits of vehicle performance. This study aims to construct a motorcycle C class evaluation method based on an expert rider’s subjective evaluation. On the premise that expert riders can rate the C class, we improved a test procedure that used a subjective evaluation sheet as the concrete C class evaluation method for an actual hazardous event.
Journal Article

Investigation of Mechanism for Formation of EGR Deposit by in situ ATR-FTIR Spectrometer and SEM

2016-10-17
2016-01-2351
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide (NOx) emissions. However, a lacquer is formed on the EGR valve or EGR cooler due to particulate matter and other components present in diesel exhaust, causing serious problems. In this study, the mechanism of lacquer deposition is investigated using attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and scanning electron microscopy (SEM). Deposition of temperature-dependent lacquers was evaluated by varying the temperature of a diamond prism between 80 and 120 °C in an ATR-FTIR spectrometer integrated into a custom-built sample line, which branched off from the exhaust pipe of a diesel engine. Lacquers were deposited on the diamond prism at 100 °C or less, while no lacquer was deposited at 120 °C. Time-dependent ATR-FTIR spectra were obtained for approximately 2 h from the beginning of the experiment.
Journal Article

An Experimental Study on the Fire Response of Vehicles with Compressed Hydrogen Cylinders

2010-04-12
2010-01-0134
To investigate the events that could arise when fighting fires in vehicles with carbon fiber reinforced plastic (CFRP) hydrogen storage cylinders, we conducted experiments to examine whether a hydrogen jet diffusion flame caused by activation of the pressure relief device (PRD) can be extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles.
Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Journal Article

Combustion Behavior of Leaking Hydrogen and Effects of Ceiling Variations

2011-04-12
2011-01-0254
Hydrogen concentration during combustion in a confined space with a ceiling was investigated. The results indicated that steady-state hydrogen concentration was highest at the ceiling surface for all hydrogen flow rates. When hydrogen concentration was 10-20%, weak flame propagation occurred at the ceiling surface, with the most easily burnable spots being dented areas such as seams, pores and creases on the ceiling surface. The unstable and limited nature of flame propagation at the ceiling surface was attributed to the relationship between temperature and hydrogen concentration in a confined space.
Journal Article

Development and Characteristics of a Burner for Localized Fire Tests and an Evaluation of Those Fire Tests

2012-04-16
2012-01-0987
We have developed a new propane burner that satisfies the requirements of localized fire test which was presented in SAE technical paper 2011-01-0251. This paper introduces the specifications of this burner and reports its characteristics as determined from various fire exposure tests that we conducted in order to gather data. These tests included temperature and heat flux distribution on cylinder surfaces, which would be useful for the design of automotive compressed fuel cylinders. Our fire exposure tests included localized and engulfing fire tests to compare TPRD activation time, cylinder burst pressure and other parameters between different flame configurations and tests to identify the effects of an automotive compressed fuel cylinder on localized fire test results.
Journal Article

Investigation of the Impact Phenomenon During Minor Collision

2013-04-08
2013-01-1545
ISO 12405-1,2 specifies international testing standards for lithium-ion batteries for vehicles. In the mechanical shock test is used to determine if the battery is damaged due to the shock imposed when the vehicle runs over a curb or similar minor accidents. Therefore, we conducted minor collision tests against a curb using an actual vehicle and compared the test results with the conditions specified in ISO 12405-1,2. The results confirmed that the impulse wave obtained using an actual vehicle within the range of the test in this study differs from the shape of the impulse wave specified in ISO 12405-1,2.
Technical Paper

A Study of Compression Ignition Engine Operated by Various Biomass Fuels

1991-10-01
912335
The engine performance, combustion characteristics and exhaust emission of pre-chamber type compression ignition engine operated by various biomass fuels were investigated experimentally. The biomass fuel investigated in this report are an emulsified fuel made with gas oil and hydrous ethanol or hydrous methanol, an emulsified fuel made with hydrous methanol and rape-seed oil, and neat rape-seed oil, and gas oil. There are small deviations of the experimental results between the biomass fuels, however, the general tendencies of the engine performances and exhaust gas characteristics operated by biomass fuels are as follows: The brake thermal efficiency during biomass fuel operation becomes maximum at a certain injection timing as well as those of the gas oil operation. And this injection timing is advanced with increasing the biomass content in the fuel.
Technical Paper

Evaluation of Regulated Materials and Ultra Fine Particle Emission from Trial Production of Heavy-Duty CNG Engine

2006-10-16
2006-01-3397
A prototype CNG engine for heavy-duty trucks has been developed. The engine had sufficient output in practical use, and the green-house gas emission rate was below that of the base diesel engine. Furthermore, the NOx emission rate was reduced to 0.16 g/kWh in the JE05 mode as results of having fully adjusted air fuel ratio control. The measured emission characteristics of particles from the prototype CNG engine demonstrated that oil consumption was related to the number of particles. Moreover, when oil consumption is at an appropriate level, the accumulation mode particles are significantly reduced, and the nuclei mode particles are fewer than those of diesel-fueled engines.
Journal Article

Research on Method for Classifying Injury Severity Using Motorcycle Accident Data for ISO 26262

2015-11-17
2015-32-0714
ISO 26262 was established in 2011 as a functional safety standard for passenger cars. In this standard, ASILs (Automotive Safety Integrity Levels) representing safety levels for passenger cars are determined by evaluating the hazardous events associated with each item constituting an electrical and/or electronic safety-related system according to three evaluation criteria including injury severity. On the other hand, motorcycles will be included in the scope of application of ISO 26262 in the next revision. It is expected that a severity evaluation for motorcycles will be needed because motorcycles are clearly different from passenger cars in vehicle mass and structure. Therefore, this study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data.
Journal Article

Examination of the Validity of Connections between MSILs and ASILs in the Functional Safety Standard for Motor Vehicles

2015-11-17
2015-32-0794
ISO 26262, a functional safety standard for motor vehicles, was published in November 2011. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply automotive safety integrity levels (ASILs) to motorcycles because the situation of usage in practice presumably differs between motorcycles and motor vehicles. In our previous study, we newly defined safety integrity levels for motorcycles (MSILs) and proposed that the levels of MSILs should correspond to levels one step lower than those of ASILs; however, we did not investigate the validity of their connections. Accordingly, in this research, we validated the connections. We defined the difference of levels of SILs between motorcycles and motor vehicles as the difference of target values of random hardware failure rates specified in ISO 26262-5.
Journal Article

Kinetic Modeling Study of NOx Conversion Based on Physicochemical Characteristics of Hydrothermally Aged SCR/DPF Catalyst

2017-10-08
2017-01-2386
Diesel engines have better fuel economy over comparable gasoline engines and are useful for the reduction of CO2 emissions. However, to meet stringent emission standards, the technology for reducing NOx and particulate matter (PM) in diesel engine exhaust needs to be improved. A conventional selective catalytic reduction (SCR) system consists of a diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and urea-SCR catalyst. Recently, more stringent regulations have led to the development of SCR systems with a larger volume and increased the cost of such systems. In order to solve these problems, an SCR catalyst-coated DPF (SCR/DPF) is proposed. An SCR/DPF system has lower volume and cost compared to the conventional SCR system. The SCR/DPF catalyst has two functions: combustion of PM and reduction of NOx emissions.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Journal Article

Comparison of fuel economy and exhaust emission tests of 4WD vehicles using single-axis chassis dynamometer and dual-axis chassis dynamometer

2011-08-30
2011-01-2058
The demands of application of dual-axis chassis dynamometers (4WD-CHDY) have increased recently due to the improvement of performance of 4WD-CHDY and an increase in the number of 4WD vehicles which are difficult to convert to 2WD. However, there are few evaluations of any differences between fuel economy and exhaust emission levels in the case of 2WD-CHDY with conversion from 4WD to 2WD (2WD-mode) and 4WD-CHDY without conversion to 2WD (4WD-mode). Fuel economy and exhaust emission tests of 4WD vehicle equipped with a typical 4WD mechanism were performed to investigate any differences between the case of the 2WD-mode and the 4WD-mode. In these tests, we measured ‘work at wheel’ (wheel-work) using wheel torque meters. A comparison of the 2WD-mode and the 4WD-mode reveals a difference of fuel economy (2WD-mode is 1.5% better than that of 4WD-mode) and wheel-work (2WD-mode is 3.9% less than that of 4WD-mode). However, there are almost no differences of exhaust emission levels.
X