Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Combined Longitudinal and Lateral Control for Automated Lane Guidance of Full Drive-by-Wire Vehicles

2015-04-14
2015-01-0321
This paper presents a simultaneous longitudinal and lateral motion control strategy for a full drive-by-wire autonomous vehicle. A nonlinear model predictive control (NMPC) problem is formulated in which the nonlinear prediction model utilizes a spatial transformation to derive the dynamics of the vehicle about the reference trajectory, which facilitates the acquisition of the tracking errors at varying speeds. A reference speed profile generator is adopted by taking account of the road geometry information, such that the lateral stability is guaranteed and the lane guidance performance is improved. Finally, the nonlinear multi-variable optimization problem is simplified by considering only three motion control efforts, which are strictly confined within a convex set and are readily distributed to the four tires of a full drive-by-wire vehicle.
Journal Article

Modeling Combined Braking and Cornering Forces Based on Pure Slip Measurements

2012-09-24
2012-01-1924
A novel predictable tire model has been proposed for combined braking and cornering forces, which is based on only a few pure baking and pure cornering tests. It avoids elaborate testing of all kinds of combinations of braking and side forces, which are always expensive and time consuming. It is especially important for truck or other large size tires due to the capability constraints of tire testing facilities for combined shear forces tests. In this paper, the predictive model is based on the concept of slip circle and state stiffness method. The slip circle concept has been used in the COMBINATOR model to obtain the magnitude of the resultant force under combined slip conditions; however the direction assumption used in the COMBINATOR is not suitable for anisotropic tire slip stiffness.
Technical Paper

A Study of Tire Lag Property

2001-03-05
2001-01-0751
Tire lag property is a basic property of tire dynamics, and it has significant influence on the performance of vehicle dynamics. In distance domain, the side force and moments produced by a massless tire are basically displacement or path frequency dependent, rather than time dependent. In the paper, on the basis of the stretched-string model, the first-order filtering of deflection for the front point of the contact print and the first-order filtering of side force have been introduced. Tire system can be regarded as a first-order linear system under small slip angle. The force response of tire has the characteristics of the responses of first-order linear system under small angle. The relaxation length is an important parameter in studying tire lag property. It decreases with increasing slip angle. It plays an important role in the study of tire transient properties.
Technical Paper

A Control Algorithm for Electric Power Steering of Tire Blowout Vehicle to Reduce the Impact Torque on Steering Wheel

2013-04-08
2013-01-1239
Impact torque will be generated on the steering wheel when one tire suddenly blows out on high way, which may cause driver's psychological stress and result in driver's certain misoperations on the car. In this paper, the model of tire blowout vehicle was established; the tire blowout was detected based on the change rate of tire pressure, meanwhile, the rack force caused by tire blowout was estimated through a reduce observer; finally the compensation current was figured out to reduce the impact torque on the steering wheel. Results of simulation tests showed that the control strategy proposed in this paper can effectively reduce the impact torque on the steering wheel and reduce the driver's discomfort caused by tire blowout.
Technical Paper

Tire Carcass Camber and its Application for Overturning Moment Modeling

2013-04-08
2013-01-0746
The properties of contact patch are key factors for tire modeling. Researchers have paid more attention to the contact patch shape and vertical pressure distribution. Some innovative concepts, such as Local Carcass Camber, have been presented to explain special tire modeling phenomena. For a pragmatic tire model, a concise model structure and fewer parameters are considered as the primary tasks for the modeling. Many empirical tire models, such as the well-known Magic Formula model, would become more complex to achieve satisfactory modeling accuracy, due to increasing number of input variables, so the semi-empirical or semi-physical modeling method becomes more attractive. In this paper, the concept of Tire Carcass Camber is introduced first. Different from Local Carcass Camber, Tire Carcass Camber is an imaginary camber angle caused only by lateral force on the unloaded tire.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

2013-04-08
2013-01-0413
Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
Technical Paper

Variable Steering Ratio Design for Vehicle Steer-by-Wire System with Joystick

2016-04-05
2016-01-0455
Steering-by-wire(SBW) system makes the vehicle not constrained by the steering wheel control. Joystick, button and touch screen can all be used for automobile steering control. Using joystick to achieve steering operations has its unique advantages and many problems which are needed to be resolved at the same time. This paper firstly introduced the components of traditional steering wheel steer-by-wire system, then came up with the difference between joystick steer-by-wire system and traditional steer-by-wire system about transmission ratio, transmission ratio control strategy of joystick steer-by-wire system is proposed at the same time. At last, this paper studied driver’s busy degree when the vehicle running with a big turning radius at low speed and the effect of different angle transmission ratio on vehicle handing stability when the vehicle running at intermediate speed.
Technical Paper

Development a HIL Test Bench for Electrically Controlled Steering System

2016-04-05
2016-01-0051
Electric power steering (EPS), active front wheel steering (AFS) and steer by wire systems (SBW) can enhance the handling stability and safety of the vehicle, even in dangerous working conditions. Now, the development of the electric control steering system (ECS) is mainly based on the way that combines the test of the electric steering hardware-in-loop (HIL) test bench with real vehicle tests. However, the real vehicle tests with higher cost, long cycle and vulnerable to space weather have the potential safety problems at early development. On contrast, electronic control steering HIL test bench can replace real vehicle tests under various working conditions and make previous preparations for real vehicle road tests, so as to reduce the number of real vehicle test, shorten the development cycle, lower development costs, which has gradually become the important link of research and development of electronic steering system.
Technical Paper

Research on Integrated Chassis Control Strategy for Four-Wheel Independent Control Electric Vehicle

2014-09-30
2014-01-2290
Four-wheel independent control electric vehicle is a new type of x-by-wire EV with four wheels independent steering and four wheels independent drive/brake systems. In order to take full advantage of the vehicle's performance potential, this paper presents a novel integrated chassis control strategy. In the paper, the strategy is designed by the hierarchical control structure and divided into integrated control layer and allocation layer. By this method, the control logical can be modularized and simplified. In the integrated control layer, Model Prediction Control (MPC) is adopted to design the integrated control unit, which belongs to be a kind of local optimization algorithm with feedback correction features. Using this method could avoid the system performance degradation caused by the control model mismatch. The control allocation layer is to optimally distribute the vehicle control forces to the steering/driving/brake actuators on each wheel.
X