Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Technical Paper

A Driving Simulator Study of Young Driver’s Behavior under Angry Emotion

2019-04-02
2019-01-0398
The driving behaviors of young drivers under the influence of anger are analyzed by driving simulator in this paper. A total of 12 subjects are enrolled during the experiment. Standardized videos are utilized to induce the driver's anger emotion. And the driver's electrocardiogram (ECG) signal is collected synchronously and compared before and after emotional trigger, which prove the validity of emotional trigger. Based on the result, the driver's driving performance under the straight road and the curve under normal state and angry state are compared and analyzed. The results of independent sample t-test show that there are significant differences in the running time of straight sections and the standard deviation of steering wheel angle in curves between normal and angry states. In conclusion, the longitudinal and lateral operation of drivers is unstable in angry state and the driver will be more destructive to the regular driving behavior.
Technical Paper

Research on Driver’s Lane Change Intention Recognition Method Based on Principal Component Analysis and GMM-HMM

2022-03-31
2022-01-7021
Aiming at the problems of long lane change intention recognition, complicated lane change model, and huge amount of processing data in the current research, this paper uses principal component analysis to improve the driver’s lane change intention recognition model using traditional pattern recognition. Firstly collect 7 parameters including driver operation and vehicle running characteristics. After data standardization and PCA (principal component analysis), the top three principal components that can reflect the information content of the original data are nearly 90%. Then, a lane-change intent recognition model based on GMM-HMM was established, three lane change intents cannot be directly observed as the hidden state of the model; and three principal component quantities obtained through linear changes are used as observational measurements.
X