Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Parametric Investigation of Two-Stage Pilot Diesel Injection on the Combustion and Emissions of a Pilot Diesel Compression Ignition Natural Gas Engine at Low Load

2020-06-23
2020-01-5056
The purpose of this study is to evaluate the impact of two-stage pilot injection parameters on the combustion and emissions of pilot diesel compression ignition natural gas (CING) engine at low load. Experiments were performed using a diesel/natural gas dual-fuel engine, which was modified from a six-cylinder diesel engine. The effect of injection timing and injection pressure of two-stage pilot diesel were analyzed in order to reduce both the fuel consumption and total hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. The results indicate that, because injection timing can determine the degree of pilot diesel stratification, in-cylinder thermodynamic state, and the available mixing time prior to the combustion, the combustion process can be controlled and optimized through adjusting injection timing.
Technical Paper

A Quasi-Dimensional Combustion Model for SI Engines Fuelled by Hydrogen Enriched Compressed Natural Gas

2008-06-23
2008-01-1633
HCNG is short for hydrogen enriched natural gas. Compared to traditional gasoline, diesel or even natural gas engines HCNG fuelled engines have several advantages on environment protection and energy security and in order to make full extent of the new fuel, several modifications have to be made in the corresponding engine and the control strategy. So there is a need to develop a predictive model to simulate the engine's performance without really running the engine, which could speed up the development of HCNG engines. This paper dose such a job. At first the paper presents the fundamentals of the quasi-dimensional model. The equations of the two-zone thermodynamic model and turbulent entrainment combustion model are both introduced. The methods of calculating the related parameters such as theoretical adiabatic flame temperature, laminar burning velocity of HCNG mixture under various hydrogen blending ratios are also given.
Technical Paper

Development and Validation of an On-line Hydrogen-Natural Gas Mixing System for Internal Combustion Engine Testing

2008-06-23
2008-01-1580
Hydrogen enriched compressed natural gas (HCNG) is thought to be a potential alternative to common hydrocarbon fuels for SI engine applications. Experimental researches focusing on how to use this kind of fuel to its full extent have been conducted for over ten years and are still on their way. From a review of these researches it is found that one of the biggest obstacles of efficiently and economically conducting such experiments is how to mix desired amount of hydrogen with natural gas. Most of the previous experiments use pre-bottled hydrogen/ NG mixtures (by mixing and storing desired amount of hydrogen and NG in high pressure steel cylinders before the tests) which are quite costly and unsafe, due to high pressure operation. More importantly, the blending ratio cannot be varied by that approach. By comparison, this paper presents an on-line hydrogen-natural gas mixing system through which the hydrogen/ NG blending ratio can be easily varied during the tests.
Technical Paper

Development of a Gas-Phase LPG Injection System for a Small SI Engine

2003-10-27
2003-01-3260
This paper presents the development of an electronic control LPG gas injection system and its application in a small SI engine. The tests results show that the developed LPG gas injection system can meet the needs for the goal of high engine power output and low exhaust emissions based on the engine bench tests. With the LPG electronic gas injection system, the air-fuel ratio can be optimized based on the requirements and CO and NOx emission levels are decreased significantly compared with the LPG mechanical mixer fuel supply system, based on the same HC emission levels. With the new gas phase LPG electronic control injection system, the HC emission level is controlled below the 300 ppm under most engine conditions and under 200 ppm when the engine speed is over 3000 r/min. The NOx emission level is under 2600 ppm in the whole range of engine operation conditions and is decreased by 2000 ppm compared with the LPG mechanical mixer system.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

2002-05-06
2002-01-1738
This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Waste Coke Oven Gas Used as a Potential Fuel for Engines

2011-04-12
2011-01-0920
Coke oven gas (COG) is a byproduct of coking plants in steel mills which can be methanized resulting in a hydrogen-methane mixture with a volumetric fraction of roughly 55% hydrogen (roughly 13.25% by mass) and 45% methane (roughly 86.75% by mass). In order to simulate the use of coke oven gas as a fuel for engines, this study focuses on hydrogen enriched compressed natural gas (HCNG) at a hydrogen volumetric fraction of 55%, which is the same content as the methanized COG. The power, efficiency and emissions characteristics are outlined at different load conditions which will be provided for the next step electronic control, performance optimization and product development research. This potential alternative fuel has the potential not only to reduce engine emissions, but will also help reduce the waste COG produced in large quantities by factories across the world.
Technical Paper

A Numerical Study on the Effects of Hot EGR on the Operation of Natural Gas Engine Ignited by Diesel-Butanol Blends

2017-03-28
2017-01-0760
Butanol, which is a renewable biofuel, has been regarded as a promising alternative fuel for internal combustion engines. When blended with diesel and applied to pilot ignited natural gas engines, butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency. However, high blend ratio of butanol is limited by its longer ignition delay caused by the higher latent heat and higher octane number, which restricts the improvement of emission characteristics. In this paper, the potential of increasing butanol blend ratio by adding hot exhaust gas recirculation (EGR) is investigated. 3D CFD model based on a detailed kinetic mechanism was built and validated by experimental results of natural gas engine ignited by diesel/butanol blends. The effects of hot EGR is then revealed by the simulation results of the combustion process, heat release traces and also the emissions under different diesel/butanol blend ratios.
Technical Paper

Characteristics of Particulate Emissions Fueled with LPG and Gasoline in a Small SI Engine

2004-10-25
2004-01-2901
This paper presents experimental studies of particulate emissions in a small SI engine fueled with LPG and gasoline fuels. A single cylinder, four-stroke, water-cooled, 125cc EFI engine with gasoline fuel is used as the baseline engine. Characteristics of the particulate emissions of the two fuels are compared. Test results show that: there are great quantities of particulate emissions for both fuels, but the total numbers of particulate emissions for the two fuels are generally in the same level. The distribution of the particulate sizes is in bimodal type for the gasoline, but for the LPG its first peak is not markedly in some conditions. The particulate sizes of the second peak for the two fuels appear at about the same size. At middle loads and 3000r/min, the particulate emissions for both of the two fuels are the greatest.
Technical Paper

Matching Optimum for Low HC and CO Emissions at Warm-up Phase in an LPG EFI Small SI Engine

2005-10-24
2005-01-3897
Based on a 125cm3 single cylinder SI engine, the designated idle speed was controlled by adjusting of cycle ignition advance angle. By analyzing the effects of different idle speed and throttle open position on three way catalyst (TWC) light-off time and conversion efficiency of HC and CO emissions, combined with the corresponding total HC and CO emissions level, the optimum idle speed and throttle open position at engine's warm-up phase were found by the matching optimum. The present method for engine control strategy is helpful to optimize the warm-up phase emission levels in SI engine with LPG fuel.
Technical Paper

Research on the Characteristics of Enrichment Fuel Injection Process in the Pre-Chamber of a Marine Gas Engine

2015-09-01
2015-01-1961
Fuel injection and fuel-air mixture formation processes have significant influence on the performance of spark ignition gas engines. In order to study the fuel enrichment injection process in the pre-chamber of a marine gas engine, the flow field in the pre-chamber during the gas fuel injection period was investigated by the particle image velocimetry (PIV) method. An organic glass model of pre-chamber was made for optical measurement. The flow fields in the pre-chamber with four different gas injection angles were analyzed, respectively. The measurement results were qualitatively compared to the CFD calculation results as the verification of the calculation. Based on the comparison of the PIV experiment results, an optimal gas fuel injection angle was chosen. Furthermore, 3D CFD calculation models with the baseline and optimal fuel injection angles of a marine spark ignited natural gas engine were generated to calculate the working process.
X