Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Impact of Ice Formation in Diesel Fuel on Tier 4 Off-Road Engine Performance with High Efficiency Fuel Filtration

2015-09-29
2015-01-2817
The winter of 2013-2014 provided an opportunity to operate off-road vehicles in cold weather for extended time as part of a vehicle/tier 4 diesel engine validation program. An unexpected area of study was the performance of high efficiency, on engine, fuel filters during continuous vehicle operation in cold weather. During the program we observed unexpected premature fuel filter plugging as indicated by an increase in pressure drop across the filter while in service. Field and laboratory testing was completed at John Deere and Donaldson to understand the cause of filter plugging. Although conditions were found where winter fuel additives could cause plugging of high efficiency filters, premature filter plugging occurred even when testing with #1 diesel fuel. This fuel contained no additives and was used at temperatures well above its cloud point.
Journal Article

Water Injection as an Enabler for Increased Efficiency at High-Load in a Direct Injected, Boosted, SI Engine

2017-03-28
2017-01-0663
In a Spark-Ignited engine, there will come a point, as load is increased, where the unburned air-fuel mixture undergoes auto-ignition (knock). The onset of knock represents the upper limit of engine output, and limits the extent of engine downsizing / boosting that can be implemented for a given application. Although effective at mitigating knock, requiring high octane fuel is not an option for most markets. Retarding spark timing can extend the high load limit incrementally, but is still bounded by limits for exhaust gas temperature, and spark retard results in a notable loss of efficiency. Likewise, enriching the air-fuel mixture also decreases efficiency, and has profound negative impacts on engine out emissions. In this current work, a Direct-Injected, Boosted, Spark-Ignited engine with Variable Valve Timing was tested under steady state high load operation. Comparisons were made among three fuels; an 87 AKI, a 91 AKI, and a 110 AKI off-road only race fuel.
Journal Article

Dynamic Engine Control for HCCI Combustion

2012-04-16
2012-01-1133
One of the factors preventing widespread use of Homogeneous Charge Compression Ignition or HCCI is the challenge of controlling the process under transient conditions. Current engine control technology does not have the ability to accurately control the individual cylinder states needed for consistent HCCI combustion. The material presented here is a new approach to engine control using a physics-based individual cylinder real time model to calculate the engine states and then controlling the engine with this state information. The model parameters and engine state information calculated within the engine controller can be used to calculate the required actuator positions so that the desired mass of air, fuel, and residual exhaust gas are achieved for each cylinder event. This approach offers a solution to the transient control problem that works with existing sensors and actuators.
Journal Article

Studies on the Impact of 300 MPa Injection Pressure on Engine Performance, Gaseous and Particulate Emissions

2013-04-08
2013-01-0897
An investigation has been carried out to examine the influence of up to 300 MPa injection pressure on engine performance and emissions. Experiments were performed on a 4 cylinder, 4 valve / cylinder, 4.5 liter John Deere diesel engine using the Ricardo Twin Vortex Combustion System (TVCS). The study was conducted by varying the injection pressure, Start of Injection (SOI), Variable Geometry Turbine (VGT) vane position and a wide range of EGR rates covering engine out NOx levels between 0.3 g/kWh to 2.5 g/kWh. A structured Design of Experiment approach was used to set up the experiments, develop empirical models and predict the optimum results for a range of different scenarios. Substantial fuel consumption benefits were found at the lowest NOx levels using 300 MPa injection pressure. At higher NOx levels the impact was nonexistent. In a separate investigation a Cambustion DMS-500 fast particle spectrometer, was used to sample and analyze the exhaust gas.
Technical Paper

Integrated Simulation of Engine Performance and AFR Control of a Stoichiometric Compression Ignition (SCI) Engine

2011-04-12
2011-01-0698
This paper describes the advantage of the integrated simulation platform and presents the results of performance simulations and the feed-forward air-fuel ratio (AFR) controller design of a new concept stoichiometric compression ignition (SCI) engine based on this platform. In this integrated simulation environment, the SCI engine was modeled in GT-Power and a simplified production engine control module (ECM) is implemented in Simulink/Matlab for the performance simulation and AFR control. The integrated engine and controller model was used to investigate constant-speed load-acceptance (CSLA) performance. During performance simulation, searching for operating conditions is difficult but critical for performance analysis. Trial and error method would require a long time to do. Based on the integrated simulation, a proportional-integral (PI) controller was designed to find the accurate operating conditions.
Technical Paper

Effects of Numerical Models on Prediction of Cylinder Pressure Ringing in a DI Diesel Engine

2018-04-03
2018-01-0194
Pressure ringing phenomena in internal combustion engine are often observed in cylinder pressure measurement, which may be due to combustion dynamics, pressure oscillation inside the combustion chamber and/or inside a drilled probe hole for cylinder pressure sensor installation. In the present study, combustion process in a production DI diesel engine instrumented with pressure sensors in the cylinder head was analyzed using 3D combustion CFD simulation. Three combustion models (the CTC model with the Shell autoignition model, the Sage model with detailed chemistry, and the ECFM-3Z model) and three reaction mechanisms (the Shell autoignition model, the Chalmers reduced n-heptane mechanism, and the IFP PRF mechanism) were employed to validate their capability in capturing pressure ringing phenomena. Grid size within the drilled hole and speed of sound CFL number were varied to evaluate the effects on pressure ringing prediction.
Technical Paper

Assessment of In-Cylinder Thermal Barrier Coatings over a Full Vehicle Drive Cycle

2021-04-06
2021-01-0456
In-cylinder thermal barrier coatings (TBCs) have the capability to reduce fuel consumption by reducing wall heat transfer and to increase exhaust enthalpy. Low thermal conductivity, low volumetric heat capacity thermal barrier coatings tend to reduce the gas-wall temperature difference, the driving potential for heat transfer from the gas to the combustion chamber surfaces. This paper presents a coupling between an analytical methodology for multi-layer coated wall surface temperature prediction with a fully calibrated production model in a commercial system-level simulation software package (GT-Power). The wall surface temperature at each time step was calculated efficiently by convolving the engine wall response function with the time-varying surface boundary condition, i. e., in-cylinder heat flux and coolant temperature. This tool allows the wall to be treated either as spatially uniform with one set of properties, or with independent head/piston/liner components.
Journal Article

Increasing the Effective AKI of Fuels Using Port Water Injection (Part I)

2021-04-06
2021-01-0470
Anti-knock index (AKI) is a metric that can be used to quantify the anti-knock performance of a fuel and is the metric used in the United States. AKI is the average of Research Octane Number (RON) and Motor Octane Number (MON), which are calculated for every fuel on a Cooperative Fuel Research (CFR) engine under controlled conditions according to ASTM test procedures. Fuels with higher AKI have better knock mitigating properties and can be run with a combustion phasing closer to MBT in the knock limited operating region of a gasoline engine. However, fuels with higher AKI tend to be costlier and less environmentally friendly to produce. As an alternative, the anti-knock characteristics of lower AKI fuels can be improved with water injection. In this sense, the water injection increases the ‘effective AKI’ of the fuel.
Technical Paper

Extraction of Liquid Water from the Exhaust of a Diesel Engine

2015-09-29
2015-01-2806
Introducing water in a diesel engine has been known to decrease peak combustion temperatures and decrease NOx emissions. This however, has been limited to stationary and marine applications due to the requirement of a separate water supply tank in addition to the fuel tank, thereby a two-tank system. Combustion of hydrocarbon fuels produce between 1.35 (Diesel) and 2.55 times (Natural Gas) their mass in water. Techniques for extracting this water from the exhaust flow of an engine have been pursued by the United States department of defense (DOD) for quite some time, as they can potentially reduce the burden of supply of drinking water to front line troops in theater. Such a technology could also be of value to engine manufacturers as it could enable water injection for performance, efficiency and emissions benefits without the drawbacks of a two-tank system.
X