Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Evaluation of Photometric Data Files for Use in Headlamp Light Distribution

2010-04-12
2010-01-0292
Computer simulation of nighttime lighting in urban environments can be complex due to the myriad of light sources present (e.g., street lamps, building lights, signage, and vehicle headlamps). In these areas, vehicle headlamps can make a significant contribution to the lighting environment 1 , 2 . This contribution may need to be incorporated into a lighting simulation to accurately calculate overall light levels and to represent how the light affects the experience and quality of the environment. Within a lighting simulation, photometric files, such as the photometric standard light data file format, are often used to simulate light sources such as street lamps and exterior building lights in nighttime environments. This paper examines the validity of using these same photometric file types for the simulation of vehicle headlamps by comparing the light distribution from actual vehicle headlamps to photometric files of these same headlamps.
Technical Paper

Nighttime Visibility in Varying Moonlight Conditions

2019-04-02
2019-01-1005
When the visibility of an object or person in the roadway from a driver’s perspective is an issue, the potential effect of moonlight is sometimes questioned. To assess this potential effect, methods typically used to quantify visibility were performed during conditions with no moon and with a full moon. In the full moon condition, measurements were collected from initial moon rise until the moon reached peak azimuth. Baseline ambient light measurements of illumination at the test surface were measured in both no moon and full moon scenarios. Additionally, a vehicle with activated low beam headlamps was positioned in the testing area and the change in illumination at two locations forward of the vehicle was recorded at thirty-minute intervals as the moon rose to the highest position in the sky. Also, two separate luminance readings were recorded during the test intervals, one location 75 feet in front and to the left of the vehicle, and another 150 feet forward of the vehicle.
Technical Paper

Calibrating Digital Imagery in Limited Time Conditions of Dawn, Dusk and Twilight

2021-04-06
2021-01-0855
This paper presents a methodology for accurately representing dawn and dusk lighting conditions (twilight) through photographs and video recordings. Attempting to generate calibrated photographs and video during twilight conditions can be difficult, since the time available to capture the light changes rapidly over time. In contrast, during nighttime conditions, when the sun is no longer contributing light directly or indirectly through the sky dome, matching a specific time of night is not as relevant, as man-made lights are the dominate source of illumination. Thus, the initial setup, calibration and collection of calibrated video, when it is dark, is not under a time constraint, but during twilight conditions the time frame may be narrow. This paper applies existing methods for capturing calibrated footage at night but develops a method for adjusting the footage in the event matching an exact time during twilight is necessary.
Technical Paper

Speed Analysis from Video: A Method for Determining a Range in the Calculations

2021-04-06
2021-01-0887
This paper introduces a method for calculating vehicle speed and uncertainty range in speed from video footage. The method considers uncertainty in two areas; the uncertainty in locating the vehicle’s position and the uncertainty in time interval between them. An abacus style timing light was built to determine the frame time and uncertainty of time between frames of three different cameras. The first camera had a constant frame rate, the second camera had minor frame rate variability and the third had more significant frame rate variability. Video of an instrumented vehicle traveling at different, but known, speeds was recorded by all three cameras. Photogrammetry was conducted to determine a best fit for the vehicle positions. Deviation from that best fit position that still produced an acceptable range was also explored. Video metadata reported by iNPUT-ACE and Mediainfo was incorporated into the study.
X