Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Numerical Study on the Ignition of Lean CH4/Air Mixture by a Pre-Chamber-Initiated Turbulent Jet

2020-04-14
2020-01-0820
To provide insights into the fundamental characteristics of pre-chamber combustion engines, the ignition of lean premixed CH4/air due to hot gas jets initiated by a passive narrow throated pre-chamber in a heavy-duty engine was studied computationally. A twelve-hole pre-chamber geometry was investigated using CONVERGETM software. The numerical model was validated against the experimental results. To elucidate the main-chamber ignition mechanism, the spark plug location and spark timing were varied, resulting in different pressure gradient during turbulent jet formation. Different ignition mechanisms were observed for turbulent jet ignition of lean premixed CH4/air, based on the geometry effect. Ignition behavior was classified into the flame and jet ignition depending on the significant presence of hot active radicals. The jet ignition, mainly due to hot product gases was found to be advanced by the addition of a small concentration of radicals.
Technical Paper

Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry

2020-04-14
2020-01-0825
Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio.
Journal Article

Autoignition of Isooctane beyond RON and MON Conditions

2018-04-03
2018-01-1254
The present study experimentally examines the low-temperature autoignition area of isooctane within the in-cylinder pressure-in-cylinder temperature map. Experiments were run with the help of a Cooperative Fuel Research (CFR) engine. The boundaries of this engine were extended so that experiments could be performed outside the domain delimited by research octane number (RON) and motor octane number (MON) traces. Since homogeneous charge compression ignition (HCCI) combustion is governed by kinetics, the rotation speed for all the experiments was set at 600 rpm to allow time for low-temperature heat release (LTHR). All the other parameters (intake pressure, intake temperature, compression ratio, and equivalence ratio) were scanned, such as the occurrence of isooctane combustion. The principal results showed that LTHR for isooctane occurs effortlessly under high intake pressure (1.3 bar) and low intake temperature (25 °C).
Journal Article

Study on the Pre-Chamber Fueling Ratio Effect on the Main Chamber Combustion Using Simultaneous PLIF and OH* Chemiluminescence Imaging

2020-09-15
2020-01-2024
Pre-chamber combustion (PCC) enables leaner air-fuel ratio operation by improving its ignitability and extending flammability limit, and consequently, offers better thermal efficiency than conventional spark ignition operation. The geometry and fuel concentration of the pre-chamber (PC) is one of the major parameters that affect overall performance. To understand the dynamics of the PCC in practical engine conditions, this study focused on (i) correlation of the events in the main chamber (MC) with the measured in-cylinder pressure traces and, (ii) the effect of fuel concentration on the MC combustion characteristics using laser diagnostics. We performed simultaneous acetone planar laser-induced fluorescence (PLIF) from the side, and OH* chemiluminescence imaging from the bottom in a heavy-duty optical engine. Two different PC Fueling Ratios (PCFR, the ratio of PC fuel to the total fuel), 7%, and 13%, were investigated.
X