Refine Your Search

Topic

Search Results

Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

2013-04-08
2013-01-1708
The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

The High-Speed In-Vehicle Network of Integrated Control System for Vehicle Dynamics

1991-02-01
910463
This paper describes the preliminary development of an on-board integration network for vehicle dynamics. The underlying philosophy is explained and the basic requirements are set forth. A design conforming to these requirements is presented and the experiments conducted to optimise the physical layer are described. An original token passing protocol is proposed for the access method and evaluated in comparison with the contention method by means of a specially devised simulation system.
Technical Paper

Integrated Control System Between Active Control Suspension and Four Wheel Steering for the 1989 CELICA

1990-09-01
901748
We adopted the active hydropneumatic suspension and the dual-mode 4WS system for the 1989 Toyota CELICA. The active control suspension system detects the vehicle state with various sensors to control the oil pressure in the hydraulic cylinder with the linear pressure control valve; controlling attitude, ride comfort, stability & controllability and three-level vehicle height. The 4WS system continuously changes the steering angle ratio between the front and rear wheel according to the vehicle speed, decreasing the minimum turning radius at a low speed by 0.5 m and improving the controllability at a medium speed and the stability at a high speed. In addition, we further improved the performance of each system by integrally controlling the active control suspension system and the 4WS system. Thus, we succeeded in improving the total performance of vehicle dynamics by adding ABS to these systems to control the vertical, lateral and longitudinal accelerations.
Technical Paper

Improvement of Vehicle Dynamics Based on Human Sensitivity (Second Report) -A Study of Cornering Feel-

2007-04-16
2007-01-0447
Vehicle body movements that occur during cornering have a strong influence on the evaluation of ride and handling. As a first step, we analyze subjective comments from trained drivers and find that the sense of vision played a major part in cornering feel. As a result of quantitative evaluations, we hypothesize that smaller time lag between roll angle and pitch angle made cornering feel better. We perform a human sensitivity evaluation, which confirmed this hypothesis. Given this result, we derive analytical equations for the roll center kinematics and the damping characteristics, in order to find a theoretical condition for the time lag of 0sec (giving a good cornering feel). We verify this by experiment.
Technical Paper

Toyota's New Integrated Drive Power Control System

2007-04-16
2007-01-1306
Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Development of New Control Methods to Improve Response of Throttle Type Traction Control System

1992-02-01
920608
A description is made of new control methods to improve response of wheel slip regulation. These methods enabled a new Traction Control (TRC) system based on throttle control rather than brake pressure to be developed. Major points are as follows: (1) Use of fuel injection cut-off to minimize delay (2) Additional adaptive throttle control logic By these means, a response nearly equal to that with brake pressure control is achieved at lower cost and with a considerable weight saving. Furthermore, the system, by suppressing noise and vibration, enhances the driver's control ability.
Technical Paper

Development of Integrated System Between Active Control Suspension, Active 4WS, TRC and ABS

1992-02-01
920271
TOYOTA has adopted the Active Hydropneumatic Suspension and the Active Four Wheel Steering(Active 4WS) for the 1991 SOARER. The SOARER'S Active Suspension. is based on CELICA'S Active Suspension for the 1989 mode1(1)(2)(3)(4)(5)(6)(7). Because the Suspension has no coil springs,improvements in both ride and handling performance are obtained. The Active 4WS controls the rear steering angle by using yaw rate feedback contro1,and this is the world's first system in massproduction car. TOYOTA has integrated the ABS and TRC to these systems in the SOARER. We have succeeded in improving the total vehicle dynamics performance,and have obtained higher maneuver-ability and controllability with a total integrated system. The following describes the effects of integrated control.
Technical Paper

Ride Comfort Enhancement Using Active Stabilizer

2018-04-03
2018-01-0563
Ongoing research on active stabilizers involves not only control of the roll angle of the vehicle based on steering input but also improving ride comfort by reducing roll vibration caused by the antiphase road surface input. In that context, roll skyhook control, which applies skyhook theory to provide feedback on the vehicle roll and drive the actuators, has already been presented. Although vibration in all frequency bands can be reduced if there is no control delay, time lags or phase delays in control elements such as the communication, computation, low-pass filter, or actuators can amplify vibration. Consequently, a sufficient effect of controlling cannot be obtained. This paper will address wheelbase filtering, which produces a frequency that minimizes roll oscillation, and is used to suppress the influence of the undesirable vibration.
Technical Paper

Preview Ride Comfort Control for Electric Active Suspension (eActive3)

2014-04-01
2014-01-0057
This paper reports the results of a study into a preview control that uses the displacement of the road surface in front of the vehicle to improve for front and rear actuator responsiveness delays, as well as delays due to calculation, communication, and the like. This study also examined the effect of a preview control using the eActive3 electric active suspension system, which is capable of controlling the roll, pitch, and warp modes of vehicle motion.
Technical Paper

Development of Vehicle Dynamics Integrated Management

2006-04-03
2006-01-0922
We have developed a new vehicle dynamics control system that is based on a new concept and uses a new hydraulic modulator. The new algorithm, which reflects the concept and hydraulic modulator, can control a vehicle not only in emergency but also in normal driving situation. This results in excellent vehicle controllability.
Technical Paper

Multiplex Systems for Automotive Integrated Control

1993-03-01
930002
This paper describes the development of the electrical systems for the integrated control system which unified automobile electronic control systems and led to a dramatic improvement in vehicle dynamics. An outline of the system is presented first, followed by actual automobile application examples of electrical systems employing medium-speed multiplexing.
Technical Paper

Development of a Class C Multiplex Control IC

1993-03-01
930003
With the increasing use of electronic control systems to improve vehicle dynamics, there is an ever growing need to transfer control information among electronic control units(ECUs). To meet this need, a protocol was proposed for high-speed multiplex in the previous SAE paper 910463. Based on the paper, a prototype IC for high-speed multiplexing control was developed. First, a further analysis was made of the information which is transferred among ECUs. As a result, it was found that the information has certain distinctive characteristics. These characteristics are so distinctive that it may be relevant to devise a new protocol for communication. Based on the analysis, a new form of token passing method was implemented. By using this method, it is easy to calculate transmission latency time. So this method is suitable for a real time control application like vehicle dynamics control.
Technical Paper

Cruise Control System Using Adaptive Control Theory

1993-11-01
931917
Several methods have been studied by using adaptive control in order to tune parameters of the cruise control automatically. But theoretical analysis has not been done by the reason of severe non-linearity. In this paper, a vehicle dynamics model is made with theoretical analysis, and two adaptive control methods to assist the conventional PID controller are proposed.
Technical Paper

Development of an Integrated System of 4WS and 4WD by H∞ Control

1993-03-01
930267
A control law for integrating 4WS and 4WD systems is presented. It is based upon a non-linear vehicle model in which the lateral force acting on the tires changes according to the tire slip angle, slip ratio and the load. The purpose of the system is to make the actual yaw rate follow the desired yaw rate. A two-degree-of-freedom control structure has been devised and variable transformation is used to linearize the non-linear model so that H∞ control theory can be applied to design the feedback compensator. A new control theory is used to calculate optimum command values for the 4WS and 4WD actuators. Moreover, adaptive logic is added to reduce the desired yaw rate as the tires approach the limits of adhesion. Simulations and experiments prove the system greatly improves stability during cornering.
Technical Paper

Torque Converter Clutch Slip Control System

1995-02-01
950672
The torque converter clutch slip control system adopted in the Toyota A541E automatic transaxle engages the torque converter clutch by applying a steady slip speed to prevent the torque fluctuation of the engine to be transmitted to the drivetrain while enhancing the transmission efficiency of the torque converter. The feedback controller of the slip speed adopts the H∞ (H-Infinity) control theory which offers a high level of robust stability, and is the first of its kind in a mass produced component. As a result, a highly accurate and reliable system has been realized, contributing to large-scale fuel economy.
Technical Paper

Vehicle Stability Control in Limit Cornering by Active Brake

1996-02-01
960487
Improvement of vehicle dynamics in limit cornering have been studied. Simulations and tests have verified that vehicle stability and course trace performance in limit cornering have been improved by active brake control of each wheel. The controler manages vehicle yaw moment utilizing difference braking force between left and right wheels, and vehicle deceleration utilizing sum of braking forces of all wheels.
Technical Paper

Analysis of Vehicle Stability After Releasing the Accelerator in a Turn

2005-04-11
2005-01-0411
Vehicle stability after releasing the accelerator during limit cornering (from now on “Tuck-in”) is the behavior that the turning radius of a vehicle gets smaller after releasing the accelerator. This paper presents that the main factors of yaw moment variation by releasing the accelerator are the change of lateral forces due to longitudinal transfer of normal loads, lateral shift of vehicle center of gravity due to vehicle roll and tire lateral deflection, and the change of lateral forces due to deceleration. It also shows that roll stiffness distribution and longitudinal acceleration have an influence through the formulation of turning radius ratio.
Technical Paper

Development of “Aero Slit” - Improvement of Aerodynamic Yaw Characteristics for Commercial Vehicles

1989-02-01
890372
To reduse crosswind sensitivity, the yaw moment should be decreased under both transient and steady conditions. The transient condition is when a vehicle comes out immediately from a tunnel into a crosswind while the steady condition is when driving straight along the coastline. After studying the pressure distribution and the flow pattern around the body, we have reached the ideal air flow at the front-side corner that reduces the yaw moment under both conditions. And we have devised an entirely new method to achieve this better air flow. The method uses an internal flow generated by a pressure difference in the flow feeld to create a jet effect and by using only a duct for internal flow to control the outside air flow. It is done without any change to the exterior styling, except at the flow exit. We call it “Aero Slit”. This “Aero Slit” is effective only under crosswind conditions, and does not increase aerodynamic drag when a crosswind is not blowing.
X