Refine Your Search

Topic

Search Results

Technical Paper

Improving Centrifugal Pump Performance under Low Flow Rates by Adding Designed Cylindrical Disks at the Impeller Inlet

2020-04-14
2020-01-1165
Enhancing the performance of centrifugal pumps requires a thorough understanding of the internal flow. Flow simulation inside the pump can help understand the rotatory motion induced by the impellers, as well as the flow instabilities. The flow inside a centrifugal pump is three dimensional, disturbed and accompanied by tributary flow structures. When a centrifugal pump operates under low flow rates, a secondary flow known as recirculation starts to begin. The separation of flow occurs which creates vortices and decreases local pressure which induces cavitation. This phenomenon of recirculation will rise the Net Positive Suction Head Required (NPSHR). This work aims to improve the pump efficiency under low flow rates by adding multiple cylindrical disks at the pump inlet section to suppress the flow recirculation. In this study, a numerical simulation is carried out to investigate the influence on the pump internal flow by adding multi cylindrical disks.
Journal Article

Effect of Operational Testing and Trim Manufacturing Process Variation on Head Injury Criterion in FMVSS 201 Tests

2008-04-14
2008-01-1218
This paper analyzes the difference in impact response of the forehead of the Hybrid III and THOR-NT dummies in free motion headform tests when a dummy strikes the interior trim of a vehicle. Hybrid III dummy head is currently used in FMVSS201 tests. THOR-NT dummy head has been in development to replace Hybrid III head. The impact response of the forehead of both the Hybrid III dummy and THOR dummy was designed to the same human surrogate data. Therefore, when the forehead of either dummy is impacted with the same initial conditions, the acceleration response and consequently the head Injury criterion (HIC) should be similar. A number of manufacturing variables can affect the impacted interior trim panels. This work evaluates the effect of process variation on the response in the form of Head Injury Criterion (HIC).
Journal Article

Analyzing Field Failures of Engine Valve Springs in Presence of Non Metallic Inclusions by Applying Statistical and Fracture Mechanics Models

2009-04-20
2009-01-0528
The reliability of engine valve springs is a very important issue from the point of view of warranty. This paper presents a combined experimental and statistical analysis for predicting the fatigue limit of high tensile engine valve spring material in the presence of non-metallic inclusions. Experimentally, Fatigue tests will be performed on valve springs of high strength material at different stress amplitudes. A model developed by Murakami and Endo, which is based on the fracture mechanics approach, Extreme value statistics (GUMBEL Distribution) and Weibull Distribution will be utilized for predicting the fatigue limit and the maximum inclusion size from field failures. The two approaches, experimental and theoretical, will assist in developing the S-N curve for high tensile valve spring material in the presence of non-metallic inclusions.
Technical Paper

Redesign of an Assembly Line Stop Mechanism for an Automated Palletized Transport System

1998-02-23
980745
A description is provided detailing the results of the quality function deployment process used to identify customer needs and requirements. Through this process two primary project goals were developed consisting of integrating an electrical-solenoid actuated device into existing space constraints and providing cost reduction alternatives. A static and dynamic analysis was initially required to find the boundary conditions of the external forces imposed on the existing pneumatic device while being subjected to multiple pallets impacting the stop block assembly. Further static analysis was conducted to find the internal forces imposed on the stop arm subassembly in order to properly size the electrical solenoid. Subsequent research into various solenoids led to two solenoid manufacturers evaluated by means of a design evaluation matrix.
Technical Paper

Effect of Temperature on Weld Strength in Chrome Moly Space Frames

2006-12-05
2006-01-3648
Chromium Molybdenum Steel (AISI 4130), commonly referred to as “Chrome Moly”, is one of the most popular materials used in the construction of tubular space frames and chassis components for racing applications. Its high strength, light weight and comparably low material cost make the reasons for its popularity quite obvious. However, there is one problem that is commonly overlooked: maintaining the strength component of Chrome Moly in areas exposed to high levels of heat followed by rapid cooling during welding. This paper seeks to better understand the affects of cooling due to welding on the strength of Chrome Moly tubing.
Technical Paper

Minimizing Cost of Material Variances in Printed Circuit Board Assembly

2007-04-16
2007-01-0781
Controlling the Cost of Variance is essential to the manufacturing process of Printed Circuit Board Assembly for low volume high mix production. The material variance is identified as the additional components and resources consumed beyond the minimum required to complete the project. This Quantity Variance occurs at the effects of defects at key steps of the manufacturing process. Such occurrences result in the need to purchase additional components for the completion of the order. These additional components termed Quantity Variance alter the sequence of the manufacturing process affecting quality, timely delivery of the job and directly impacting company profitability.
Technical Paper

Shrinkage Analysis of a Constrained Thin Walled Injection Molded Component Using a Traditional Flatbed Scanner and Photometric Techniques

2008-04-14
2008-01-1447
A study was performed to determine the effects of varying the wall thickness and material glass fiber concentration for parallel and perpendicular shrinkage rates for a constrained thin-walled box shaped component. An analysis of the shrinkage for the bottom portion of a 3 dimensional constrained thin walled injection molded component was performed using measurements made from bitmap images of the components that were obtained from a traditional flatbed scanner. The shrinkage rates were determined by comparing mold cavity hatch lines to the correlating transposed hatch lines on the plastic molded component. The perpendicular and parallel shrinkage rates were determined and are discussed as a function of thickness and glass fiber content. A wide range of processing control factors was used in the study.
Technical Paper

Cold Temperature Effects on Spark Plug Performance

1998-10-19
982725
Fouling spark plugs on an internal combustion engine is greatly influenced by cold temperatures, especially at older assembly plants where the vehicle is moved several times because of discontinuities in the assembly line. To transition the vehicle, the operator starts the vehicle, places it in drive and accelerates rapidly, then shuts the vehicle off. This process only lasts ten to fifteen seconds and does not allow the spark plug or engine to get to a high enough operating temperature to evaporate away the fuel, which fouls the spark plugs. A spark plug fouling test is devised and is used to investigate which properties of fuel play the most significant anti-fouling role. Some additives believed to have anti-fouling properties will also be investigated to determine their significance. The anti-fouling fuel will then be implemented at the assembly plants.
Technical Paper

Redesign of a Differential Housing for a Formula Car (FSAE)

1998-11-16
983077
A unique differential assembly was needed for the Lawrence Technological University (LTU) SAE Formula race car. Specifically, a differential was required that had torque sensing capabilities, perfect reliability, high strength, light weight, the ability to withstand inertia and shock loading, a small package, no leaks, the ability to support numerous components. In that regard, an existing differential was selected that had the torque sensing capabilities, but had deficiencies that needed to be fixed. Those deficiencies included the following: Differential unit was over 4 kg unmounted, with no housing. This was considered too heavy, when housed properly. Bearing surface was provided on only one end of the carrier. This design provides insufficient bearing surface to support either the differential housing or half-shafts The internal drive splines integral to the case are not optimized for a perpendicular drive/axle arrangement, such as, a chain drive.
Technical Paper

Spherical Beamforming and Buzz, Squeak and Rattle (BSR) Testing

2009-05-19
2009-01-2114
Control of annoying noises such as buzzes, squeaks and rattles (BSRs) is particularly important for complex products such as automobiles. This importance has become even more significant as electric vehicles become more popular, eliminating much of the ambient background vehicle noise. A customer's perception of the durability and solidness of a vehicle is based largely on sensory responses such as sound. Recent advances in beamforming technology have the potential to change the way BSR audits and vehicle development testing are done. This paper introduces the application of spherical beamforming technology to BSR testing and provides test results showing the localization accuracy of a rigid spherical array system in a vehicle cabin.
Technical Paper

LED Junction Temperature Measurement and its Applications to Automotive Lamp Design

2004-03-08
2004-01-0224
There are more and more LEDs being used in an automobile to replace the incandescent lamps. All those applications require high brightness LED work at high ambient temperature. However, the luminous flux output of a LED is directly related to its junction temperature. Higher the LED junction temperature, lower the luminous output from the LED. In order to efficiently apply LED to an automotive application the temperature effects on luminous flux must be accounted for in any design of a LED assembly. A LED junction temperature measurement system is described in this paper to measure the differential junction temperature between a reference LED and the LED under test. And the results are used to improve the LED assembly design.
Technical Paper

An Adjustable Aluminum Differential

2001-03-05
2001-01-0883
The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Technical Paper

Aerodynamic Evaluation on Formula SAE Vehicles

2001-03-05
2001-01-1270
Aerodynamics plays an important role in the dynamic behavior of a vehicle. The purpose of this paper is to evaluate external and internal aerodynamics of the 1999 and 2000 Lawrence Technological University Formula SAE vehicles. The external aerodynamic study will be limited to form and interference drag and the evaluation of lift. The internal aerodynamics study will be limited to ram air to the intake, heat exchanger, and oil cooler.
Technical Paper

The Study of a Cockpit with a Fixed Steering Wheel Position: Methods and Model

2003-06-17
2003-01-2180
An ergonomics study was conducted in a mock-up with a fixed steering wheel position. Drivers adjusted the seat and pedals to a comfortable position. A three-dimensional coordinate measurement machine (CMM) was used to measure the comfortable position of 21 participants. Proven test methods were used to collect the posture data. A model is described to assist in seat and pedal placement for cockpit design.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Effects of Inlet Curved Spacer Arrancement on Centrifugal Pump Impellers

2017-03-28
2017-01-1607
This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
Technical Paper

Investigation of the Effect of Vortex Generation on Flow Structure and Heat Transfer Enhancement using Particle Image Velocimetry (PIV)

2017-03-28
2017-01-1609
In this experimental work, a flow field test system embedded with different vortex generators was installed to investigate the impact of vortex generation on heat transfer of air flow in a horizontal channel, and the flow structure was evaluated using a particle image velocimetry (PIV) system. Three different configurations of vortex generators were fitted vertically on a flat plate, at attack angles of 15o, 30o, and 45o, and tested at four different incoming air velocities. An axial fan was used to supply the flow of air through the test section. The effects of Reynolds number, attack angle, and the shape of vortex generators were examined in this work. The experimental results showed that, the presence of vortex generators had considerable effect on temperature distribution, pressure drop, and heat transfer augmentation in the channel flow.
Technical Paper

Reducing the Acoustic Surface Power of a Cooling Fan Using the Mesh Morpher Optimizer

2017-03-28
2017-01-1610
Cooling fans have many applications in industrial and electronic fields that remove heat away from the system. The process of designing a new cooling fan with optimal performance and reduced acoustic sources can be fairly lengthy and expensive. The use of CFD with support of mesh morphing, along with the development of optimization techniques, can improve the acoustic’s performance of the fan model. This paper presents a new promising method which will support the design process of a new cooling fan with improved performance and less acoustic surface power generation. The CFD analysis is focused on reducing the acoustic surface power of a given cooling fan’s blade using the surface dipole acoustic power as the objective function, which leads to an optimized prototype design for a better performance. The Mesh Morpher Optimizer (MMO) in ANSYS Fluent is used in combination with a Simplex model of the broadband acoustic modeling.
Technical Paper

Experimental Investigation of the Impact of Nanofluids on Heat Transfer Performance of a Motorcycle Radiator

2017-03-28
2017-01-1611
In the present work, the effect of various nanofluids on automotive engine cooling was experimentally studied. Al2O3, TiC, SiC, MWNT (multi-walled nanotube), and SiO2 nanoparticles with average diameter ranging between 1 and 100 nm were mixed with distilled water to form nanofluids. An ultrasonic generator was used to generate uniform particle dispersion in the fluid. A compatibility test was carried out on all nanofluids and it was found that TiC, MWNT, and Si3N4 nanoparticles settled and separated from the fluid within 3 hours after preparation. The engine cooling performance testing setup consisted of an Aprilia SXV 450 engine, the nanofluid cooling loop, a radiator, a fan, etc. Thermocouples and resistance temperature detectors (RTD’s) were attached to the inlet and outlet of the radiator hose to monitor the temperature changes taking place in the cooling system. A flowmeter was attached to the inlet hose of the radiator to monitor the coolant flow rate.
Technical Paper

Fatigue Life Improvement through the “NOVA” Process

2013-04-08
2013-01-1400
The experimental methods focused on utilizing the newly developed NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance engine valve springs. A detailed testing plan was used to evaluate the expected and theorized possibility for fatigue life enhancement. An industry standard statistical analysis method and tools were employed to objectively substantiate the findings. Fatigue cycle testing using NOVA induction-hardened racing valve springs made of ultra-high tensile material were compared to data for springs with traditional heat treatment and those with standard processing. The results were displayed using Wöhler and modified Haigh fatigue life diagrams. The final analysis suggests that NOVA processed springs have a seemingly slight, yet significant benefit in fatigue life of 5 - 7% over springs processed through a competing method.
X