Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
Technical Paper

Qualitative Laser-Induced Incandescence Measurements of Particulate Emissions During Transient Operation of a TDI Diesel Engine

2001-09-24
2001-01-3574
Laser-induced incandescence (LII) is a sensitive diagnostic technique capable of making exhaust particulate-matter measurements during transient operating conditions. This paper presents measurements of LII signals obtained from the exhaust gas of a 1.9-L TDI diesel engine. A scanning mobility particle sizer (SMPS) is used in fixed-size mode to obtain simultaneous number concentration measurements in real-time. The transient studies presented include a cranking-start/idle/shutdown sequence, on/off cycling of EGR, and rapid load changes. The results show superior temporal response of LII compared to the SMPS. Additional advantages of LII are that exhaust dilution and cooling are not required, and that the signal amplitude is directly proportional to the carbon volume fraction and its temporal decay is related to the primary particle size.
Technical Paper

NOx-Conversion and Activation Temperature of a SCR-Catalyst Whilst Using a Novel Biomimetic Flash-Boiling AdBlue Injector on a LD Engine

2016-10-17
2016-01-2212
Yearly 3.3 million premature deaths occur worldwide due to air pollution and NOx pollution counts for nearly one seventh of those [1]. This makes exhaust after-treatment a very important research and has caused the permitted emission levels for NOx to decrease to very low levels, for EURO 6 only 0.4 g/kWh. Recently new legislation on ammonia slip with a limit of 10 ppm NH3 has been added [2], which makes the SCR-technology more challenging. This technology injects small droplets of an aqueous Urea solution into the stream of exhaust gases and through a catalytic reaction within the SCR-catalyst, NOx is converted into Nitrogen and Water. To enable the catalytic reaction the water content in the Urea solution needs to be evaporated and the ammonia molecules need to have sufficient time to mix with the gases prior to the catalyst.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Technical Paper

Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine

2013-04-08
2013-01-1615
The liquid phase penetration of diesel sprays under reacting conditions is measured in an optical heavy-duty Direct Injection (DI) diesel engine. Hot gas reservoirs along the diffusion flames have previously been shown to affect the liftoff length on multi hole nozzles. The aim of this study is to see if they also affect the liquid length. The inter-jet spacing is varied together with the Top Dead Center density and the inlet temperature. To avoid unwanted interferences from the natural flame luminosity the illumination wavelength is blue shifted from the black body radiation spectrum and set to 448 nm. Filtered Mie scattered light from the fuel droplets is recorded with a high speed camera. The liquid fuel penetration is evaluated from the start of injection to the quasi steady phase of the jets. Knowledge of jet-jet interaction effects is of interest for transferring fundamental understanding from combustion vessels to practical engine applications.
Technical Paper

An Ionization Equilibrium Analysis of the Spark Plug as an Ionization Sensor

1996-02-01
960337
The use of a spark plug as an ionization sensor in an engine, and its physical and chemical explanation has been investigated. By applying a small constant DC voltage across the electrodes of the spark plug and measuring the current through the electrode gap, the state of the gas can be probed. An analytical expression for the current as a function of temperature is derived, and an inverse relation, where the pressure is a function of the current, is also presented. It is also found that a relatively minor species, NO, seems to be the major agent responsible for the conductivity of the hot gas in the spark gap.
Technical Paper

Crank Angle Resolved HC-Detection Using LIF in the Exhausts of Small Two-Stroke Engines Running at High Engine Speed

1996-10-01
961927
In order to separate the HC-emissions from two-stroke engines into short-circuit losses and emissions due to incomplete combustion, Laser Induced Fluorescence (LIF) measurements were performed on the exhaust gases just outside the exhaust ports of two engines of different designs. The difference between the two engines was the design of the transfer channels. One engine had “finger” transfer channels and one had “cup handle” transfer channels. Apart from that they were similar. The engine with “finger” transfer channels was earlier known to give more short-circuiting losses than the other engine, and that behavior was confirmed by these measurements. Generally, the results show that the emission of hydrocarbons has two peaks, one just after exhaust port opening and one late in the scavenging phase. The spectral information shows differences between the two peaks and it can be concluded that the latter peak is due to short-circuiting and the earlier due to incomplete combustion.
Technical Paper

Prediction of Heat Transfer to the Walls for Autoignition Related Situations in SI Engines

2000-03-06
2000-01-1084
A theoretical investigation is presented concerning how the heat transfer process from the gas in the combustion chamber, burned as well as the unburned gas regions, to the walls is affected by the autoignition phenomenon in SI engines. The zonal model in ref. [1] is adapted for the calculations. The radiative heat flux during the heat release period and the heat transfer in the thermal boundary layer by convection are predicted for situations when autoignition has occurred. The cylinder wall temperature is also used as a parameter in this study. The effects of engine operating parameters such as engine speed, timing of ignition, duration time of flame propagation and the fuel parameter Research Octane Number, i.e., RON, on the heat flux to the walls have been studied. The heat release is calculated for a detailed chemical kinetic model, refs. [1, 2 and 3].
Technical Paper

Effect of Inhomogeneities in the End Gas Temperature Field on the Autoignition in SI Engines

2000-03-06
2000-01-0954
This paper reports an one–dimensional modeling procedure of the hot spot autoignition with a detailed chemistry and multi–species transport in the end gas in an SI engine. The governing equations for continuity of mass, momentum, energy and species for an one–dimensional, unsteady, compressible, laminar, reacting flow and thermal fields are discretized and solved by a fully implicit method. A chemical kinetic mechanism is used for the primary reference fuels n–heptane and iso–octane. This mechanism contains 510 chemical reactions and 75 species. The change of the cylinder pressure is calculated from both flame propagation and piston movement. The turbulent velocity of the propagating flame is modeled by the Wiebe function. Adiabatic conditions, calculated by minimizing Gibb's free energy at each time step, are assumed behind the flame front in the burned gas.
Technical Paper

Automatic Reduction of Detailed Chemical Reaction Mechanisms for Autoignition Under SI Engine Conditions

2000-06-19
2000-01-1895
A method for automatic reduction of detailed reaction mechanisms using simultaneous sensitivity, reaction flow and lifetime analysis has been developed and applied to a two-zone model of an SI engine fuelled with Primary Reference Fuel (PRF). Species which are less relevant for the occurrence of autoignition in the end gas are declared redundant. They are identified and eliminated for different pre-set minimum levels of reaction flow and sensitivity. The resulting skeletal mechanism is valid in the ranges of initial and boundary values for which the analyses have been performed. A measure of species lifetime is calculated from the chemical source terms, and the species with the lifetime shorter than and mass-fraction less than specified limits are selected for removal.
Technical Paper

A Skeletal Kinetic Mechanism for the Oxidation of Iso-Octane and N-Heptane Validated Under Engine Knock Conditions

1999-10-25
1999-01-3484
A method for automatic reduction of detailed kinetic to skeletal mechanisms for complex fuels is proposed. The method is based on the simultaneous use of sensitivity and reaction-flow analysis. The resulting skeletal mechanism is valid for the parameter range of initial and boundary values, the analysis have been performed for. The gas-phase chemistry is analyzed in the end gas of an SI-engine, using a two-zone model. Species, not relevant for the occurrence of autoignition in the end gas, are defined as redundant. They are identified and eliminated for different pre-set levels of minimum reaction flow and sensitivity. The error in the mechanism increases monotony with increasing pre-set level of minimum reaction flow.
Technical Paper

In-Cylinder Pressure Measurements Using the Spark Plug as an Ionization Sensor

1997-02-24
970857
A model based on an ionization equilibrium analysis, that can relate the ion current to the state of the gas inside the combustion volume, has been presented earlier. This paper introduces several additional models, that together with the previous model have the purpose of improving the pressure predictions. One of the models is a chemistry model that enables us to realistically consider the current contribution from the most relevant species. A second model can predict the crank angle of the peak pressure and thereby substantially increase the accuracy of the pressure predictions. Several other additions and improvements have been introduced, including support for part load engine conditions.
X