Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Electrochemical Deionization of Waste Water Using a New Polymer Membrane Cell

1997-07-01
972427
Water is the single largest resource required for crew sustenance during long-term human space missions. To preserve this resource, water must be reclaimed from waste streams containing minimum concentrations of organic and inorganic impurities. The removal of dissolved ions from waste water is essential to regenerative water reclamation technology for life support systems. The aim of this project was to demonstrate a novel electrochemically driven purification method using tubulated bipolar ion exchange membranes for the separation of dissolved ionic impurities from spacecraft waste water. Generally, electrochemical separation methods have limited applications since they can only be applied to the purification of the water that has a sufficiently high dissolved ion content to make the solution conductive. The new method, however, uses a membrane composed of bilayers of oppositely charged ionically conducting polymers.
Technical Paper

Design of an Electrochemical Tubulated Bipolar Membrane Breadboard System for the Treatment of Spacecraft Waste Water

1998-07-13
981755
The removal of dissolved ions from waste water is essential for water repurification on long-term human space missions. Lynntech, Inc., has demonstrated a novel electrochemically driven purification method using tubulated bipolar ion exchange membranes for the separation of dissolved inorganic impurities as well as charged organic species from waste water. Generally, electrochemical separation methods have limited applications since they can only be applied to the purification of water that has a sufficiently high dissolved ion content to make the water conductive. The novel tubulated bipolar membranes composed of bilayers of oppositely charged ionically conducting polymers can be used to overcome this limitation. This paper deals with the scaling-up of such a device to increase the throughput to process about 100 liters of waste water per day. This is achieved by using stacks of tubulated bipolar membranes.
Technical Paper

An Ozone-Based Laundry and Laundry Wash Water Recovery System

1997-07-01
972426
The impact on the water recovery and reclamation system resulting from laundry operations has been the primary obstacle to the implementation of a laundry capable for long duration space missions. Such an onboard system can provide improved housekeeping effectiveness and crew health maintenance aspects. Electrochemically generated ozone was used as a laundry (cleaning) agent under simulated washing conditions and compared with Tide® and dodecynlbenzoicsuccinic acid (DBSA). Three aspects were studied: (i) cleaning ability; (ii) disinfection potential; and, (iii) impact on the resulting laundry water. In most instances, ozone provided a detergent-like cleaning ability that was as good as, or better than, Tide® or DBSA. Ozone was a superior disinfectant and, more importantly, had a low impact on the laundry wash water in terms of its potential for recycling.
Technical Paper

Microelectrode-Based Technology for the Detection of Low Levels of Bacteria

1992-07-01
921235
A microelectrode-based electrochemical detection method was used for quantitation of bacteria in water samples. The redox mediator, benzoquinone, was used to accept electrons from the bacterial metabolic pathway to create a flow of electrons by reducing the mediator. Electrochemical monitoring electrodes detected the reduced mediator as it diffused out of the cells and produced a small electrical current. By using a combination of microelectrodes and monitoring instrumentation, the cumulative current generated by a particular bacterial population could be monitored. Using commercially available components, an electrochemical detection system was assembled and tested to evaluate its potential as an emerging technology for rapid detection and quantitation of bacteria in water samples.
Technical Paper

Water Purification, Microbiological Control, Sterilization and Organic Waste Decomposition Using an Electrochemical Advanced Ozonation Process

1992-07-01
921234
Electrochemical oxidant generation has been combined with UV photolysis to provide a highly effective means of water purification, decomposition of bacterial organic substances, microbiological control and sterilization. Ozone is an oxidant with many unique features that make it a valuable tool for biomedical applications. It is an excellent bactericidal, virucidal and sporicidal agent making it ideal for use as a sterilant. Combining O3 with UV radiation stimulates formation of hydroxyl radicals (OH·) which accelerates a wide range of organic oxidations. While in some instances maintenance of an oxidant residual is necessary, the residual can be rapidly removed by UV light at the point of use (i.e., Water For Injection). Test results on pyrogen decomposition, bacterial organic decomposition, microbiological sterilization, residual removal and water purification as a final step for producing pharmaceutical grade water are discussed.
Technical Paper

Post-Treatment of Reclaimed Waste Water Based on an Electrochemical Advanced Oxidation Process

1992-07-01
921275
The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. Lynntech, Inc., working with NASA-JSC, is developing an electrochemical UV reactor which generates oxidants, operates at low temperatures and requires no chemical expendables. The reactor is the basis for an advanced oxidation process, in which electrochemically generated ozone and hydrogen peroxide are used, in combination with ultraviolet light irradiation, to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency and process reaction kinetics are discussed. At the completion of this development effort, the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.
X