Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Identification of Swing Gate Seal Chucking using Predictive Methodologies and Test Correlation

2023-04-11
2023-01-0169
For decades, customer complaints on Squeak & Rattle issues have come as a question of quality for the automotive industry. Squeak and rattle sounds are customer irritants due to their non-patterned and transient nature. Squeak is a friction induced noise that generally occurs because of rubbing of the two materials that are incompatible with each other. While rattle is a phenomenon that occurs due to the impact between the two parts having unintended gap. They are no more secondary noises and avoiding or elimination of these become significant for brand building and warranty cost reduction. Chucking is a form of squeak noise that occurs due to the interaction between uncoated seal to seal. In Swing gate, this phenomenon is seen when seal bulb inner layers are completely compressed. Swing gate have fore-aft modes that are excited due to dynamic responses from different road profiles.
Technical Paper

The Influence of the Material Construction of Leatherette in Squeak Noise Control

2023-04-11
2023-01-0075
PVC (polyvinylchloride) synthetic leather or called leatherette is being widely used for automotive interior applications for seat cover, gear boot, gap hider, steering wheel and roof liner due to their leather like feel and texture, flexibility, sewability, affordability, and wide design freedom. However, the leatherette construction such as top coating, backing fabric and fabric weaving pattern plays a critical role in the finished leatherette performance for the specific application. This study provides the influence of different coating material and different backing fabric in squeak behavior of gear boot PVC leatherette. The squeak behavior was studied by stick slip test as per automotive engineering requirements, and the response of these coating and fabric surface was measured in the form of Risk Priority Number (RPN).
Technical Paper

Understanding the Stick Slip Behavior of Plastics and Target Setting: An OEM Perspective

2019-06-05
2019-01-1465
Automotive OEMs are aggressively using different materials for interiors due to value proposition and variety of options available for customers in market. Excessive usage of different grade plastics with zero gap philosophy can cause stick slip effect leading to squeak noise. Even though systems and subsystems are designed using best practices of structural design and manufacturing tolerances, extreme environmental conditions can induce contacts leading to squeak noise. Appropriate selection of interface material pairs can minimize the possibilities of squeak conditions. Stick-slip behavior of different plastics is discussed in the present study, along with critical parameters during material compatibility testing in a tribological test stand. Friction coefficient of different material pairs for a defined normal load and sliding velocity are analyzed for patterns to recognize squeaks versus time.
X