Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Frictional Power Loss Distribution of Automotive Axles - Experimental Evaluation and Analysis

2021-09-22
2021-26-0483
The given paper presents the main elements of frictional power loss distribution in an automotive axle for passenger car. For reference two different axles were compared of two different sizes to understand the impact of size and ratio of gear and bearings on power loss characteristics. It was observed that ~50% of total axle power loss is because of pinion head-tail bearing and its seals, which is very significant. Roughly 30% of total power loss is contributed by pinion-ring gear pair and differential bearings and remaining ~20% by wheel end bearing and seals. With this study the automotive companies can take note of the area where they need to focus more to reduce their CO2 emissions to meet the stringent BS6, CAFÉ and RDE emission norms.
Technical Paper

Methodology & Experimental Study to Reduce Steering Effort and Improve Directional Stability in Three Wheeled Vehicles

2021-09-22
2021-26-0083
With an intense competitive automotive environment, it becomes imperative for any OEM to launch their products into the market in a short span of time & with a ‘First Time Right’ approach. Within the current scenario in the Automotive Industry, the selection of optimum set of hard points and wheel geometry often becomes an iterative or a trial-and-error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Through this paper, an attempt has been made to develop a methodology for deciding wheel geometry parameters (covered in the later section of this paper like Caster, Camber, Mechanical trail, etc.) [1, 2, 3, 4] for a three wheeled vehicle as a First Time Right (FTR) approach to cut down on conventional, expensive & time-consuming iterative approach.
Technical Paper

Experimental Measurement to Predict Power Steering Pump Hub Load with Implementation of Belt Driven Starter Generator

2017-01-10
2017-26-0149
The present scenario in automobile industry is formed on developing smart vehicles by introducing various feature towards fuel efficient, low emission, weight reduction, and advance safety feature with hybrid and micro-hybrid vehicles. One such feature gaining more popularity is the Belt Driven Starter Generator [1] for its contribution towards fuel efficiency, emission reduction [2], weight reduction and convenient packaging with engine/electrical interface. However this invention puts challenge of integration and increase in loading to various system like power steering pump and crank shaft pulley, as all these systems are interlinked with a common belt. In this interface links we observed the steering pump hub under risk of structural failure due to additional load to support Belt Driven Starter Generator. Failure to identify safe limits of hub load can affect safe vehicle operation [3].
Technical Paper

Experimental Analysis of Lead Acid Batteries for Estimating State of Charge and State of Health

2013-11-27
2013-01-2742
Batteries have become increasingly important in automotives with increase in vehicle electrical loads. Therefore the reliability of battery is a critical issue in automotive applications. It has been noticed that most batteries have limited cycle durability, that is, the total capacity drops when a battery is charged and discharged for a number of cycles. If a battery is too weak to offer sufficient energy, it should be replaced at the right time. But current problem is that there is no reliable method to quantify the capacity loss and to estimate the remaining capacity of battery. Complete discharge, which is the only way of capacity estimation, which will effect the battery plates therefore it cannot be used too frequently. This paper summarizes the experimental work in the development of the battery status estimation algorithm.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Investigation and Analysis of Brake Factor Variation and its Relation with Brake Pulling

2022-09-19
2022-01-1171
Vehicle pull during braking can be defined as the deviation of vehicle travel from intended path of the vehicle by a margin of half a wheel track or more. It is a dynamic phenomenon with very complex inter-dependencies among the combined functioning of various aggregates such as steering system, suspension system, axles, and brakes. The problem is aggravated with shorter wheelbase & higher CG (Centre of Gravity) height, where the instantaneous load transfers are sudden and of relatively high magnitude which can lead to a combination of forces that are responsible for vehicle drifting or pulling to anyone side of centre-line travel. Vehicle with shorter wheelbases, high GVW and high CG heights are more prone to this unstable behaviour due to sudden change in dynamic forces acting on the tires while turning and braking.
Technical Paper

Effect of Anti-Dive Suspension Geometry on Braking Stability

2022-09-19
2022-01-1172
Suspension plays a crucial role in stabilizing, comfort and performance of a vehicle. During vehicle braking operation, load transfer happens from rear axle to front axle resulting in shifting of vehicle’s center of gravity towards vehicle front for a momentarily duration which is called diving. This phenomenon leads to dropping of traction at rear wheel end resulting in lifting of rear axle with front wheel as pivot. This causes increase in front to rear weight ratio of vehicle system and compromising driver safety due to skidding and locking of rear wheel-end. To minimize this phenomenon’s affect, optimum anti-dive suspension geometry is used to have better rear wheel end traction resulting in improved braking stability.
Technical Paper

Simulation of Differential Stroke (D-Cycle) Engine Technology for Agricultural Tractor

2022-03-29
2022-01-0389
Model based calibration is extensively used by the automotive OEMs (Original Equipment manufacturers) because of its correlation accuracy with test data and freezing the operating parameters such as injection timings, EGR rates, fuel quantity etc. The prediction of Brake specific Fuel consumption (BSFC), Exhaust and intake temperatures are very close to test data. The prediction of Brake specific NOx is directionally reliable with acceptable tolerance.
Technical Paper

Conceptual Design Proposal for Adapting D-Cycle Technology in Agricultural Tractor Engine

2022-03-29
2022-01-0600
This paper reviews application of D-Cycle technology to compact tractor diesel engine for improving efficiency & power. The study considers design challenges that are presented for accommodating D-Cycle technology in engine. The paper also covers resolving those challenges with established technical solutions. The study focuses on modifying conventional compact 4-stroke diesel engine with the intention of keeping design changes to a minimum level for incorporating differential stroke technology. Designing of vertically splitting lightweight piston crown which can be smoothly engaged and separated from main piston body without any impact, stem rod which connects piston crown with rocker arm, split connecting rod and rocker arm which is actuated by extra actuating camshaft in addition of present valvetrain camshaft, are covered. Lubrication of additional actuating camshaft is done by extending existing oil galleries.
Technical Paper

Instrumentation Technique Used for Design Optimization of Front Axle Support Bracket in Agricultural Tractor

2019-01-09
2019-26-0083
Agriculture tractor industry is highly competitive in the current market scenario with global majors competing in various markets. A tractor having an optimum design is of prime importance to keep the cost low while providing higher value to the customers. Technology advances in instrumentation methodology and data acquisition helps not only in providing the right inputs for the design of a component/system but also very much useful for design/system optimization. Front Axle Support of an agricultural tractor is one of the structural member which is connected to the Chassis which is called skid of the tractor to which the Front Axle is mounted through Pillow block (Plummer block) arrangement to facilitate axle oscillation about the tractor longitudinal center line. Front ballast weights are mounted on a bracket which is intern mounted to the front axle support to maintain the required front reaction in various agricultural operations.
Technical Paper

Approach to Estimate Life of Li-Ion Power Battery for Mild Hybrid Application in India

2015-04-14
2015-01-0249
Development of Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs) is gaining traction across all geographies to help meet increasing fuel economy regulations and as a pathway to offset concerns due to climate change. But HEVs and EVs have so far been a nascent market for India. These technologies have primarily shifted towards Lithium-ion batteries (LIB) for energy storage due to its high energy and power densities. In order to make actual business sense of these technologies, of which, battery is a major cost driver, it is necessary for these batteries to provide similar performance and life expectancy across the operating boundary of the vehicles, as well as provide the requirements at a competitive cost. In other words, the LIBs have to sustain the normal life cycle requirements and withstand wide range of storage temperatures that the conventional gasoline/diesel vehicles have been good at and still ensure good life.
Technical Paper

Methodology Development for Multibody Simulation to Understand Shift Shock Behaviour

2021-04-06
2021-01-0714
One of the critical challenges for transmission design is to predict the gear shift dynamics accurately and to ensure smooth gear shift quality for different driver behaviors while shifting. This calls for detailed understanding of the RWUPs. Through prototype testing, understanding the influence of different parameters is costly and time consuming. Also, the testing does not provide necessary visualization of exact physics and the identification of issues is difficult. One of such typical concerns is shift shock while shifting the gear. Sudden gear engagement or disengagement leads to impact torque in drivetrain during shifting of gears, which in turn results in winding and unwinding of powertrain due to vehicle Inertia. This induces noise and vibration that affects driver comfort. The paper presents, the methodology to frontload prediction of dynamics of gear shifting that leads to shift shock behavior.
Technical Paper

Development of Methodology to Determine Toe Geometry of any Vehicle at Its Early Design Stage for Optimum Tyre Life

2019-10-11
2019-28-0105
Toe setting is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. In the present scenario of automotive industry, toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost.
Technical Paper

Next Generation Power Distribution Unit in Wiring Harness

2019-11-21
2019-28-2571
With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. The concept of next generation power distribution unit in automobiles is achieved using miniaturization of its sub-components which involves replacing the mini fuses and JCASE fuses with LP mini and LP JCASE fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost. Furthermore, to address stringent weight and space targets, LP mini fuses and LP JCASE fuses were further replaced with micro-2 fuse and M-case fuse respectively.
Technical Paper

Effect of Temperature on Synchronizer Ring Performance

2023-11-10
2023-28-0054
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed.
Technical Paper

Development of a Fuel Efficiency Enhancement Module for Tractors

2024-01-16
2024-26-0064
In farm tractors, the available drawbar power, and Power Take-Off (PTO) power are generally lower than the engine power due to parasitic losses. These losses are caused by engine-driven auxiliary loads such as cooling fans, hydraulic pumps for power steering, alternators, etc. Minimizing these parasitic losses can increase the available drawbar power and PTO power, resulting in direct fuel savings by reducing fuel consumption. The continuous increase in fuel costs and the environmental impact of emitted gases from burned fuel into the atmosphere have necessitated the replacement of hydraulic power steering and mechanical fans with Electric Power Steering (EPS) and electric fans, respectively, to improve efficiency. The existing battery has been replaced with a higher capacity battery to provide power to the electric fan, electric power steering, and other electrical components.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

Develop the Methodology Using DOE Approach to Improve Steering Return Ability of a Vehicle through Virtual Simulation

2019-10-11
2019-28-0012
In driving, Steering is the input motion to the vehicle. The driver uses steering input to change the direction of the vehicle. During Parking or U turn bends the Steering is locked and later released to follow the desired path. Steering return ability is defined as the ratio of difference between steering wheel position at lock condition and steering wheel angle after 3 seconds of release to the steering wheel angle at lock condition. Having proper steering return ability characteristics has an important effect on vehicle steering characteristics. In this study, a full vehicle ADAMS model is prepared, and virtual steering return ability have been simulated in ADAMS/CAR for a Pickup truck vehicle. Simulated responses in the steering wheel angle have been validated by comparison with measurements. A Design of Experiment study is setup and Iterations are carried out to find the effect of Hard points and friction parameters.
Journal Article

Design and Development of Electro Hydraulics Hitch Control for Agricultural Tractor

2017-01-10
2017-26-0227
Tractor hitch control system is used for attaching and operating various Agricultural Implements and for operating tipping trailer. The system has also got provision to attach additional Aux valves for rear and front mounted attachments. The rear mounted implements are coupled to the tractor using Three Point Linkage (3PL) System. The hitch hydraulics system consists of hydraulic pump, filter, piping’s, fittings and hydraulics lift unit. Hydraulics lift unit consists of a proportional control valve, cylinder, piston and power linkages. Conventional control valve is hydro mechanical part operated by mechanical linkages. The control valve and linkages plays major role in performance of hydraulics system. Hydraulics is required to operate in extreme conditions of soils such as very soft like sand to very hard like black cotton sand.
X