Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Suspension Components Calculation at Concept Stage to Evaluate the Ride and Handling Characteristics

2021-09-22
2021-26-0082
Vehicle handing and ride are the critical attributes for customers while buying new passenger vehicle. Hence it is very important to design suspension which meets customer expectations. Often tuning of suspension parameters is very difficult at later stage like wheelbase, vehicle center of Gravity and other suspension parameters like roll center heights etc. A parametric mathematical model is built to study the effect of these parameters of vehicle handling and ride attributes at concept stage. These models are used to calculate the suspension ride rates, spring rates and Anti roll bar diameters for meeting target vehicle ride and handling performance. The model also calculates natural frequency of suspension and vehicle for understanding pitch and roll behaviours.
Technical Paper

A Comprehensive Study on the Challenges of Dual Mass Flywheel in Real-World Operating Conditions of the Indian Market

2020-04-14
2020-01-1014
The present work is focussed on the real-world challenges of a dual mass flywheel (DMF) equipped vehicle in the Indian market. DMFs are widely used to isolate the drivetrain from the high torsional vibrations induced by the engine. While DMFs can significantly improve noise, vibration and harshness (NVH) characteristics of a vehicle, there are multiple challenges experienced in real-world operating conditions when compared with the single mass flywheel (SMF). The present work explains the challenges of using a DMF in a high power-density diesel powertrain for a multi-purpose vehicle (MPV) application in the Indian market. Measurements on the flat-road operating conditions revealed that the DMF vehicle is very sensitive for launch behaviour and requires a higher clutch modulation. Vibration measurements at the driver’s seat confirm that the SMF vehicle could be launched more comfortably at the engine idle speed of 850 RPM.
Technical Paper

Pass-by Noise Generating System in Battery Electric Vehicle

2020-09-25
2020-28-0432
Battery Electric Vehicles (BEVs) are gaining momentum all around the world and India is not far behind in terms of EV sales. The principle difference between BEVs and Internal Combustion Engine based Vehicles (hereafter known as ICEs) is that BEVs run on electric motors and don’t have Internal Combustion based engines that generate significant noise while running. The engine noise contributes to noise pollution, but it is useful in alerting the pedestrians about the incoming vehicle and can function as a passive safety system. The lack of such noise can be a safety threat to pedestrians, cyclists, wildlife etc. Many countries around the world have mandated, or are in the process of mandating, a pass-by noise generating system to alert pedestrians about the incoming vehicle. This paper is an attempt to study various pass-by noise generating systems used worldwide in electric four-wheelers.
Technical Paper

Methodology to Quantitatively Evaluate the Secondary Ride Characteristics of a Vehicle

2017-07-10
2017-28-1959
The Ride Comfort has always been an important attribute of a vehicle that gets trade-off with handling characteristics of a vehicle. However, to cater the growing customer requirements for better ride comfort in a vehicle without compromising on other attributes, evaluating and achieving optimal ride comfort has become a significant process in the vehicle development. In the current engineering capability and virtual engineering simulations, creating an accurate and real time model to predict ride comfort of a vehicle is a challenging task. The qualitative evaluation of ride attributes has always been the proven conventional method to finalize the requirements of a vehicle. However, quantitative evaluation of vehicle ride characteristics benefits in terms of target setting during vehicle development process and in robust validation of the final intended product against its specifications.
Technical Paper

A Study on the Effect of Steering Input Frequency on Transient Lateral Dynamics of Four-Wheeled Passenger Vehicles

2019-01-09
2019-26-0070
Vehicle lateral dynamic response parameters such as yaw velocity, lateral acceleration, roll angle, etc. depend on the nature of steering input. Response parameters vary with the amplitude and frequency of steering input. This paper deals with developing insights into the effect of steering input frequency on transient handling dynamics. For the purpose two SUV segment vehicles with similar curb weight are considered. Vehicles are given pulse inputs of the amplitudes corresponding to 4 m/s2 steady state lateral acceleration and target speeds of 80 kmph and 100 kmph, as recommended in ISO 7401:2011. Steering inputs are executed using a Steering Robot (ABD SR30). Lateral transient dynamic response gains as well as natural frequencies of yaw are studied for 0-2 Hz input frequencies. Several insights are developed, adding to the understanding of transient lateral dynamics and its relationship with steering input.
Technical Paper

New Simulation Methodology for Improved Visual Interaction between Physical Test and CAE in Seat Anchorage Test

2016-02-01
2016-28-0226
For effective occupant protection, automotive vehicle structure needs to be developed for seat anchorage test to prevent the failure of seat anchorages during high speed impacts. Seat anchorages (SA) certification test is mandatory for M & N category vehicles in India. Conventional way of testing automotive vehicle structures for seat anchorage test is using deceleration sled with the help of bungee ropes. Deceleration pulse generated from the physical test is used as a loading input in the current CAE process. With the current CAE method, final deformation of the vehicle structure looks similar to physical test, however, the vehicle visual interactions differ significantly during the deformation event. In the current study, a modified loading methodology is proposed to match both the final deformation as well as vehicle visual interactions. Loading and boundary conditions of physical test were understood in detail with the help of simple free body diagrams.
Technical Paper

Development of Vehicle Occupant Head Movement Envelope for Indian Population

2015-01-14
2015-26-0151
Recent trends in vehicle occupant protection have led to renewed interest in the perception of Roominess such as headroom, shoulder room and foot room etc. Occupants head room in vehicles is currently measured using tools, procedures and definitions described in SAE J1052 and J1100. “Head Position Contours” defined in SAE J1052 are useful in establishing accommodation requirements for head space [1]. With respect to the Indian Anthropometry database, the head position contour as per SAE J1052 will not be appropriate with Indian population. With this objective in mind a head movement envelope is generated using the software - RAMSIS Digital manikin. RAMSIS is widely used by Automobile Manufacturers for Digital Human Modeling. The head movement envelope is a collation of different movements of head during driving condition.
Technical Paper

High Performance EGR Cooler Selection and its Fouling Behavior for a HSDI Diesel Engine

2015-01-14
2015-26-0087
Selection of EGR system is very complex for a particular engine application. The performance of the EGR system depends highly on the Cooler Heat Transfer Efficiency. Cooler effectiveness drops over a period of operation due to soot deposition, HC condensation, and fuel quality. This phenomenon is called as Cooler Fouling. Fouling cannot be avoided completely but the level of performance drop over time has to be studied and minimized. The minimum pressure drop and the highest efficiency in fouled condition is the target for selection of a cooler. In this study, various parameter combinations like tube shape and profile, tube length, number of tubes, tube diameter, and pitch of corrugations, which influence the cooler performance were tested. A better understanding of each of its effect on cooler effectiveness and fouling behavior was obtained. The tube shape was changed from rectangular to circular, also from smooth surface to corrugate.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

Headliner Composition Optimization without Compromising the Safety and Performance

2024-01-16
2024-26-0190
Reducing material wherever there is a possibility in automobile industry is inevitable for weight and cost saving. This paper explains about the possibilities of optimizing the material composition of automotive Headliners (also called as Roof liners) without affecting the performance and safety criteria. In this paper, we are targeting at optimizing the individual constituents of a composite Headliner. A conventional Headliner comprises of many sandwich layers of which PU foam shares the major percentage of the composition contributing to 80% of the Headliner thickness. In this paper, we are discussing about the optimization done in Headliner sandwich constituents without affecting the core performance parameters of headliner such as curtain airbag deployment, ergonomic regulations, drop test etc. By incorporating this change, without significant changes in other layers, overall weight reduction of ~24% and overall cost reduction of ~24% is achieved.
X