Refine Your Search

Topic

Author

Search Results

Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

Methodology Development for Open Station Tractor OEL Noise Assessment in the Virtual Environment

2021-09-22
2021-26-0310
There is a higher demand for quieter tractors in the agri-industry, as the continued exposure to noise levels have disastrous effects on operator’s health. To meet the world-wide regulatory norms and to be the global market leader, its mandatory to develop the comfortable tractor which meets homologation requirements and customer expectations. Typically, Operator Ear Level (OEL) noise has been evaluated in the test, after First Proto has been made. This approach increases cost associated with product development due to late changes of modifications and testing trails causing delay in time-to-market aspect. Hence, there is a need to develop the methodology for Predicting tractor OEL noise in virtual environment and propose changes at early stage of product development. At first, full vehicle comprising of skid, sheet metals and Intake-exhaust systems modelled has been built using Finite Element (FE) Preprocessor.
Technical Paper

Ladder Frame Concept Development through Parametric Beam Modelling

2021-09-22
2021-26-0416
Body-over-Frame is the primary type of construction used in SUVs, pick-ups, and other commercial vehicles in India. In this type of construction, the body, engine, suspensions etc. are mounted on the ladder frame. Since the frame acts as the skeleton of the vehicle, optimal design of frame at the concept stage of the vehicle program is critical for meeting all structural performance targets. Frontloading of these targets aids in architecture development and reduces future design modifications. The natural frequency response from the frame directly affects the NVH performance of the vehicle. This paper focuses on frontloading the natural frequency targets by performing concept-level simulations on the ladder frame even before creation of 3D concept data. A parametric beam model is created based on the reference vehicles. The beam model has been validated with correlation of more than 85% compared with CAE and physical testing outputs of existing vehicles.
Technical Paper

Agricultural Tractor Engine Noise Prediction and Optimization through Test and Simulation Techniques

2021-09-22
2021-26-0277
Engine radiated noise has complex behavior as engine assembly consist different components, varying dynamic forces with wide range of speed. For open station tractor, engine noise is major contributor and hence needs to be optimized for regulatory norms as well customer comfort. The awareness about NVH comfort in domestic market as well as export market is increasing as customer have become more demanding. This forces OEM’s to put serious efforts to ensure the OEL noise / Engine noise is at acceptable levels. Identifying the optimized countermeasures to reduce the engine noise during the early design phase has a greater impact in reducing product development time and cost. This paper describes about a process that has been established for evaluating engine radiated noise and to improve the overall NVH performance.
Technical Paper

Finite Element Analysis of Connecting Rod and Correlation with Test

2009-04-20
2009-01-0816
With the increasing need to have faster product development and yet achieve the optimum design, thrust on accurate FEA of components and system is felt. The connecting rod is an important component of the crank train and it has a significant mass contribution in multi-cylinder engine. Principal focus is directed to connecting rods having load ratio greater than or equal to 2. As the connecting rod operates in elastic range (i.e. high cycle fatigue life region) stress life approach is adopted for fatigue life evaluation. The three fold purpose of this paper is to establish an accurate FE modelling technique and analysis procedure that simulates the test conditions, aids in accurate fatigue life prediction and most importantly provides a simple procedure for virtual validation of connecting rod. To achieve this objective static strain measurement and fatigue test of connecting rod is carried out on a test bench.
Technical Paper

Finite Element Analysis of FEAD Bracket and Correlation with Test

2010-04-12
2010-01-0493
With the increasing demand for light weight engines, the design of FEAD (Front end accessory drive) Brackets has gradually shifted from conservative cast iron design to optimized aluminum design. Hence there is a requirement for a virtual validation procedure that is robust and accurate. The FEAD brackets for the engine are subjected to periodic vibrations (engine excitations) and random vibrations (Road excitations), the former being the more dominant of the two as road excitations are isolated by the power train mounts. Hence these brackets are susceptible to fatigue failures. The paper describes a virtual validation procedure adopted for FEAD brackets that gives accurate stress prediction and thereby ensures accuracy in predicted fatigue factor of safety for design. The simulated dynamic stresses are later compared with the test results and a good correlation is observed.
Technical Paper

Derivation of Extreme Static Durability Load Cases for FEA Based Vehicle Strength Evaluation

2011-09-13
2011-01-2174
Validation of vehicle structure by use of finite element analysis is at the core of reduction of product development time. In the early phase of validation it is required to evaluate the strength of the vehicle structure to account for the loading during physical validation and service loading. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, maneuvers and power train loads. All systems in the vehicle represent more or less complicated elastic structures subjected to time varying loads. A time domain dynamic assessment of the vehicle structure is time consuming and expensive. Also in the early phase of design wherein several design iterations need to be carried out for design validation, it is practically impossible to conduct a dynamic analysis and fatigue life assessment. Extreme static load cases are traditionally being used for this process.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Overcoming Manufacturing Challenges in Mass Production of Vanadium Micro-Alloyed Steel Connecting Rods

2022-03-29
2022-01-0234
With recent advancements to create light weight engines and therefore, to design stronger and lighter connecting rods, automobile manufacturers have looked upon vanadium micro-alloyed steels as the material of choice. These materials have been developed keeping in mind the strength and manufacturing requirements of a connecting rod. Since, 36MnVS4 has been the most popular of this category, the same has been discussed in this paper. The transition of manufacturers from the traditional C70S6 grade to the new 36MnVS4 must be dealt with in-depth study and modification of processes to adapt to new properties of the latter. C70S6 is a high carbon grade with superior fracture split whereas 36MnVS4 is a medium carbon grade with superior strength and ductility owing to the presence of vanadium.
Technical Paper

Evaluation of Cost-Effective Method of Improving the Cabin Air Quality Using HVAC case Coating

2022-11-09
2022-28-0452
Among many environments, the motor vehicle cabin micro-environment has been of public concern. Infact Air pollution more harmful to children in cars than outside. Although commuters typically spend only 1-2hrs per day of their time in vehicles, the emissions from various interior components of motor vehicles as well as emissions from exhaust fumes carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure due to their high concentrations inside vehicles’ cabins. This N9 silver ion technology helps significant reduction of microbial & viruses inside the vehicle cabin air. On contact silver will neutralize harmful bacteria on plastic surfaces giving them long lasting freshness and long-term protection. Silver is a natural antimicrobial. That means that microbes-germs can’t survive in the presence of silver ions. Silver ions released from the surface of silver molecules.
Technical Paper

Experimental Investigation of Thermal Safety of the IC Engine in the Event of Coolant Loss

2021-10-01
2021-28-0152
Power density (power/engine cubic capacity) of the latest passenger car Diesel and Gasoline engine keeps increasing with a focus to deliver best in class performance along with meeting CAFE and emission norms. This increase in power density increases the thermal load onto the coolant system. Coolant temperature sensor monitoring the coolant temperature, proper radiator sizing, optimum water pump flow capacity and thermostat tuned to the required coolant temperature range are the typical measures taken to ensure safe operation of the engine and avoid any over-heating. Typical cooling system failures are mostly due to low coolant level, a defective thermostat, non-operative water pump & fan and blockage in the coolant circuit, etc. Most of these failures can be detected with the help of a coolant temperature sensor and pre-emptive measures can be taken to avoid engine loss.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Bringing Field to Lab in Tractor Evaluation Through Three Poster Test System and Statistical Tools

2005-11-01
2005-01-3539
The emerging business imperative of frequent new product introduction in market throws up challenge to shorten testing and evaluation time. Advanced test facilities and statistical tools have a greater role in reducing the evaluation cycle time. Considering limitations of field testing, a need was felt to simulate field condition in the laboratory i.e., ‘Bringing field to lab’. In this paper, an effort is made to explain the concept of ‘Bringing field to lab’ and the approach towards accomplishing it. The methodology developed for assessing effectiveness of laboratory tests i.e., ‘Power of Lab’ is shared. Various means of accelerating the tests and verifying field to lab correlation are explained. In quest to pursue the vision of ‘Bringing field to lab’ program, a new test facility has been developed to evaluate tractor i.e., Three-Poster Test System. Features of this test system, along with it’s role in ‘Bringing field to lab’, are shared along with the test results obtained.
Technical Paper

Study of Various Techniques for the Reduction of Mobile Air Conditioning (MAC) Compressors Noise Inside the Passenger Cabin

2021-09-15
2021-28-0126
Among the Original Equipment Manufacturers (OEM’s), comfort, fuel efficiency and safety are the key factors that drive the vehicle business. The main contributors of vehicle comfort are vibration, noise, thermal comfort (temperature), air quality, light, and ergonomics. In this context, compressor noise plays an important role in the comfort of the passengers. Noise can have adverse effect on occupants in the vehicle starting from mild annoyance and may lead to loss of concentration. It is a big challenge for the automotive engineer to find the source of noise and path through which it is transmitted, and eventually to reduce or dampen it during the product development. The objective of this paper is to understand the functioning of various compressor’s noise characteristics in static (i.e. initial engagement of compressor) and dynamic condition (i.e. during compressor running).
Technical Paper

Design Analysis and Development of Aluminium Cylinder Block with Slip-Fit Cylinder Liners for High Performance New Generation Passenger Car Diesel Engine

2023-04-11
2023-01-0442
The global automotive industry is growing rapidly in recent years and the market competition has increased drastically. There is a high demand for passenger car segment vehicles with high torque delivery and fuel economy for a pleasant drivability experience. Also, to meet the more stringent emission requirements, automakers are trying very hard to reduce the overall vehicle gross weight. In lowering both fuel consumption and CO2 generation, serious efforts have been made to reduce the overall engine weight. An engine cylinder block is generally considered to be the heaviest part within a complete engine and block alone accounts for 3-4% of the total weight of the average vehicle, thus playing a key role in weight reduction consideration. Aluminum casting alloys as a substitute for the traditional cast iron can mean a reduction in engine block weight between 40 and 55% [9], even if the lower strength of aluminum compared to grey cast iron is considered.
Technical Paper

A Study on the Effect of Steering Input Frequency on Transient Lateral Dynamics of Four-Wheeled Passenger Vehicles

2019-01-09
2019-26-0070
Vehicle lateral dynamic response parameters such as yaw velocity, lateral acceleration, roll angle, etc. depend on the nature of steering input. Response parameters vary with the amplitude and frequency of steering input. This paper deals with developing insights into the effect of steering input frequency on transient handling dynamics. For the purpose two SUV segment vehicles with similar curb weight are considered. Vehicles are given pulse inputs of the amplitudes corresponding to 4 m/s2 steady state lateral acceleration and target speeds of 80 kmph and 100 kmph, as recommended in ISO 7401:2011. Steering inputs are executed using a Steering Robot (ABD SR30). Lateral transient dynamic response gains as well as natural frequencies of yaw are studied for 0-2 Hz input frequencies. Several insights are developed, adding to the understanding of transient lateral dynamics and its relationship with steering input.
Technical Paper

Innovative Methodology for Durability Evaluation of Off Road Vehicle Rear Axle under Bi-Axial Load Condition using Single Linear Actuator

2014-09-30
2014-01-2306
Rear axles are subjected to bending and torsion loads out of which Bending loads are predominant. In case of Off road vehicles Bi Axial- combination of Bending and torsion loads were predominant, because of axle construction and vehicle usage pattern. Defined test procedures are available for bending durability and torsional durability evaluation of axles. In this experiment, new test methodology was developed for Bi Axial durability evaluation of Off road vehicle rear axle with single servo hydraulic linear actuator. For creating Bi Axial load condition, we may need multiple actuators and complicated fixtures. Axle wheel end is constrained at an angle with suitable fixtures for creating the bending and torsional forces together in the axle. Servo hydraulic linear actuator with suitable loading arm is used for applying the test torque in the axle input flange.
Technical Paper

Optimizing OSRVM Package for Maximizing In-vehicle Visibility

2015-09-29
2015-01-2837
Overall in-vehicle visibility is considered as a key safety parameter essentially mandated due to the increasing traffic scenario as seen in developing countries. Driver side bottom corner visibility is one such parameter primarily defined by A-pillar bottom and outside rear-view mirror (OSRVM). While defining the OSRVM package requirements such as size, position and regulatory aspects, it is also vital to consider other influencing parameters such as position of pillars, waist-line height, and Instrument panel which affect the in-vehicle visibility. This study explains the various package considerations, methods to optimize OSRVM position, shape and housing design in order to maximize the in-vehicle visibility considering the road and traffic conditions. A detailed study on in-vehicle visibility impacted by OSRVM packaging explained and had been verified for the results.
Technical Paper

Design For Affordability -Composite Running Board

2015-01-14
2015-26-0070
Light weighting is the Current trends in automotive to achieve better fuel economy which helps for meeting fuel economy standards & to offset the higher fuel prices. Thus there is a need to develop composite running board which is light weight & structurally sound enough to meet the performance. The present paper provides a composite running board assembly for an automobile. The running board assembly includes a board, an insert body and a plurality of brackets. Upon stepping of a passenger on the board, the board transfers load on the insert body which subsequently transfers the load to the plurality of brackets thus facilitating even distribution of the load on the automobile body. This paper also put lights on the use of improved TRIZ application - an approach to inventive problem solving for designing highly affordable & light weight running board. The cost & weight reduction achieved with innovative design is about 40 % & 35 % comparing to existing cost & weight.
Technical Paper

Sealing Prediction and Improvement at Cylinder Head & Block Interface under Thermo-Mechanical Loading involving Multi- Layer Steel Gasket

2015-04-14
2015-01-1743
An inadequate sealing of the combustion chamber gasket interface may have severe consequences on both the performance & emission of an engine. In this investigation, both the distribution of the contact pressure on the gasket and the stresses of the cylinder head at different loading conditions are explored and improved by modifying the design. A single cylinder gasoline engine cylinder head assembly has been analyzed by means of an uncoupled FEM simulation to find the sealing pressure of the multi-layer steel (MLS) gasket, strength & deformation of the components involved. The thermal loads are computed separately from CFD simulations of cylinder head assembly. The cylinder head assembly consisting of head, blocks, liner, cam shaft holder, bolts, gaskets, valve guides & valve seats, is one of the most complicated sub-assembly of an IC engine.
X