Refine Your Search

Topic

Author

Search Results

Technical Paper

Suspension Components Calculation at Concept Stage to Evaluate the Ride and Handling Characteristics

2021-09-22
2021-26-0082
Vehicle handing and ride are the critical attributes for customers while buying new passenger vehicle. Hence it is very important to design suspension which meets customer expectations. Often tuning of suspension parameters is very difficult at later stage like wheelbase, vehicle center of Gravity and other suspension parameters like roll center heights etc. A parametric mathematical model is built to study the effect of these parameters of vehicle handling and ride attributes at concept stage. These models are used to calculate the suspension ride rates, spring rates and Anti roll bar diameters for meeting target vehicle ride and handling performance. The model also calculates natural frequency of suspension and vehicle for understanding pitch and roll behaviours.
Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Systematic CAE Approach to Minimize Squeak Issues in a Vehicle Using Stick-Slip Test Parameters

2021-09-22
2021-26-0269
Due to recent advancements in interior noise level and the excessive use of different grade leathers and plastics in automotive interiors, squeak noise is one of the top customer complaints. Squeak is caused by friction induced vibration due to material incompatibility. To improve costumer perception, interior designs are following zero gap philosophy with little control on tolerances leading to squeak issues. Often manufacturers are left with costly passive treatments like coatings and felts. The best option is to select a compatible material with color and finish; however, this will reduce the design freedom. Material compatibility or stick-slip behavior can be analyzed with a tribology test stand. However, this test is performed on a specimen rather than actual geometry. There were instances, when a material pair was found incompatible when tested on a specimen, but never showed any issue in actual part and vice versa.
Technical Paper

Utilizing Weathering Effect to Understand Squeak Risk on Material Ageing

2021-09-22
2021-26-0280
Squeak and rattle concerns accounts for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises such as squeak and rattle are among the top 10 IQS concerns under any OEM nameplate. Customers perceive Squeak and rattle noises inside a cabin as a major negative indicator of vehicle build quality and durability. Door squeak and rattle issues not only affects customer satisfaction index, but also increase warranty cost to OEM significantly. Especially, issues related to door, irritate customers due to material incompatibilities. Squeaks are friction-induced noises generated by stick-slip phenomenon between interfacing surfaces. Several factors, such as material property, friction coefficient, relative velocity, temperature, and humidity, are involved in squeak noise causes.
Technical Paper

Accurate Steering System Modelling for Vehicle Handling and Steering Performance Prediction Using CAE

2021-09-22
2021-26-0403
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. Vehicle execution assessment is critical in the vehicle development process, requiring exact vehicle steering system models. The effect of steering system stiffness is vital for vehicle handling, stability, and steering performance studies. The overall steering stiffness is usually not modeled accurately. Usually, torsion bar stiffness alone is considered in the modeling. The modeling of overall steering stiffness along with torsion bar stiffness is studied in this paper. Another major contributing factor to steering performance is steering friction. The steering friction is also often not considered properly.
Technical Paper

Steering Performance Calculator using Machine Learning Techniques

2021-09-22
2021-26-0415
In the conceptualization phase of vehicle development, for achieving reasonable dynamics performance, proper selection of steering system meeting all the requirements is necessary. This requires accurate prediction of major steering performance attributes like steering effort, steering torque, Turning Circle Diameter (TCD), %Ackerman and steering returnability. However, currently available models majorly depend on Computer Aided Engineering (CAE)-analysis or physical trials which requires system detailing and the same cannot be used for early prediction of the steering performances in the concept phase. This paper aims to address this deficiency with the help of a new steering performance calculator. In the calculator, performance attributes namely steering effort, steering torque, TCD and %-Ackerman has been modelled with engineering calculations and other attributes namely steering returnability&precision has been modelled through machine learning techniques.
Technical Paper

Virtual Validation of BHL Dipper Using CAE and Correlation with Test Data

2020-04-14
2020-01-0515
Use of Computer Aided Engineering (CAE) tools for virtual validation has become an essential part of every product development process. Using CAE tools, accurate prediction of potential failure locations is possible even before building the proto. This paper presents a detailed case study of virtual validation of Backhoe Loader (BHL) dipper arm using CAE tools (MBD: Multi Body Dynamics and FEA: Finite Element Analysis) and comparison of simulation results with test data. In this paper, we have illustrated the modelling of Backhoe Loader in MSc ADAMS software. The detail ADAMS model was created and validated. The component mass, Center of Gravity (C.G) and Mass Moment of Inertia (MOI) was taken from CAD data. Trenching is simulated by operating the different hydraulic cylinders of the BHL. Loader arm cylinders and stabilizer cylinders are operated to lift the machine tires above the ground level.
Technical Paper

Hybrid Optimization Methodology for Flexplate of Automatic Transmission

2020-04-14
2020-01-0916
For Automatic transmission application, crankshaft torque is transferred to torque converter through flex plate. As the flex plate has no functional requirement of storing energy as in case of Manual Transmission (MT) flywheel, flex plate design can be optimized to great extent. Flex plate structure must have compliance to allow the axial deformation of torque convertor due to ballooning pressure generated inside the converter. Flex plate experiences dynamic torque and centrifugal forces due to high rotational speed. It should have compliance to accommodate the assembly misalignments with torque convertor in both axial and radial directions. In this paper, sequential and hybrid optimization techniques are described to optimize the flex plate design with stress, stiffness and mass as design constraints. The load path, corrugation length and axial stiffness of flex plate captured accurately using this hybrid optimization.
Technical Paper

A Comprehensive Study on the Challenges of Dual Mass Flywheel in Real-World Operating Conditions of the Indian Market

2020-04-14
2020-01-1014
The present work is focussed on the real-world challenges of a dual mass flywheel (DMF) equipped vehicle in the Indian market. DMFs are widely used to isolate the drivetrain from the high torsional vibrations induced by the engine. While DMFs can significantly improve noise, vibration and harshness (NVH) characteristics of a vehicle, there are multiple challenges experienced in real-world operating conditions when compared with the single mass flywheel (SMF). The present work explains the challenges of using a DMF in a high power-density diesel powertrain for a multi-purpose vehicle (MPV) application in the Indian market. Measurements on the flat-road operating conditions revealed that the DMF vehicle is very sensitive for launch behaviour and requires a higher clutch modulation. Vibration measurements at the driver’s seat confirm that the SMF vehicle could be launched more comfortably at the engine idle speed of 850 RPM.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Journal Article

A Systematic Approach for Load Cycle Generation Based on Real World Indian Drive Profile

2012-04-16
2012-01-0504
Within the last decade, due to increasing fuel prices, unstable political situation in major oil producing nations and global warming, there is an increased demand for fuel efficient and environment friendly vehicles. In this context, research is being concentrated in the field of advanced, greener powertrain configurations ranging from hybrids to EVs to fuel cells to HCCI engines. The efficacy for any of the above stated powertrain technology, lies in the optimum component specification. Component specification, operational reliability, & life prediction are highly dependent on the traffic condition, driving nature and vary from country to country. For developing countries, like India, where the traffic & drive pattern are dense & slow moving, there is a dire need for generating load cycle based on Real World Usage Profile (RWUP). The paper will propose a systematic approach to create load cycles in order to derive component specifications for the powertrain based on RWUP.
Technical Paper

Unloaded Synchronizer Wear in Manual Transmission Gearbox

2020-09-25
2020-28-0334
Synchronizers are the most critical parts of a manual transmission. There are classical calculations available for the synchronizer design and studies are available for the normal functioning of synchronizer rings which describes how the synchronizer behaves in the event of gear shifting. The objective of this study is to describe the synchronizer behavior when synchronizers are not functional, i.e., in other gear engaged condition and the rings are free. This study describes the failure mechanism of the unused synchronizer rings which are moving freely in the packaging space. The findings of this synchronizer design cannot be limited only for synchronizer performance and standard durability calculations. To ensure proper function of synchronizer rings and to achieve the required life the external parameters like clearances, lubrication, clutch design for dampening torsional vibration from the engine are to be considered.
Technical Paper

Development of a Modern Diesel Engine with Ultra-Low Bore Distortion to Reduce Friction, Blowby, Oil Consumption and DPF Ash Loading

2020-09-25
2020-28-0344
The stringent emission regulations coupled with tighter CO2 targets demand extreme optimization of the diesel engines. In this context, it is important to minimize the cylinder bore distortions in cold and hot conditions. The cold bore distortion is primarily due to the assembly forces applied by the cylinder head bolts whereas the hot distortion is a resultant of local metal temperatures and structural rigidity. The present work describes the extreme optimization techniques used to reduce the bore distortion of a modern high power-density (60 kW / lit) diesel engine, Moreover, the benefits of reducing the bore distortion are quantified in terms of cylinder system friction, blowby rate, oil consumption (OC) and ash loading rate of the diesel particulate filter (DPF). An optimized torque plate honing is used to reduce the bore distortion in cold conditions.
Technical Paper

Sensitivity Analysis and Experimental Verification of Automotive Transmission Gearbox Synchronizer Gear Shift Quality

2020-09-25
2020-28-0386
Synchronizer is the key element for the smoother gear shift operation in the constant mesh transmission. In the gear shift operation, the double bump occurs at the contact between the sleeve teeth and the clutch body ring teeth after the full synchronization. The double bump is random in nature and the dynamics is difficult to predict. The double bump gives a reaction force to the driver and affects the gear shift quality. This paper focus on the sensitivity analysis of the synchronizer ring index percentage and the clutch body ring asymmetric chamfer angle to reduce the occurrence and magnitude of the double bump. The system level simulation model is developed using 1D simulation tool. The modeling is done after complete declutching event so that there is no power supply to the transmission. The model can handle both upstream and downstream reflected inertia depending upon the gear shift event.
Technical Paper

Design Improvement Driven by CAE for SUV Structural Crashworthiness in Offset Frontal Crash as per ECE R 94

2008-04-14
2008-01-0505
The scope of the project is to achieve SUV structural performance improvement to meet the offset frontal crash safety requirements as per ECE R 94 Regulation by design modifications in different Sub-systems of the vehicle structure suggested with the help of CAE crash simulations. The study can be classified in four main phases mentioned below. The first phase of the development is to conduct a crash test and CAE simulation for the baseline design. The second phase includes correlation activity among baseline test and CAE. The third phase is to achieve improvement by vehicle structure design modifications and new parts in chassis and BIW guided with CAE simulations and design iterations. Finally the forth phase deals with validation of new crashworthy vehicle design by last crash test.
Technical Paper

Application of Dual Density Light Weight Dash Acoustic Insulators in SUVs

2009-05-19
2009-01-2143
In the recent past a lot of emphasis is given for the overall weight reduction of the sound package used in the vehicles. The paper presents a study of one of such materials used in the automotive market. The dash panel is a primary area for the engine noise transmission to the cabin. Hence the material selection of the dash inner acoustic insulation is critical. In the conventional method a barrier (EVA) and a decoupler (foam) is used. In the conventional design the surface weight of the barrier has to be substantially high for the dash insulation to perform effectively and hence adds to more weight. In the present application of light weight material also known as dual density absorbers and barrier is used for the dash acoustic insulator. The study reveals the good acoustic performance of the light weight dash mat in terms of passenger cabin noise reduction and improved sound quality along with weight reduction.
Technical Paper

Finite Element Analysis of Connecting Rod and Correlation with Test

2009-04-20
2009-01-0816
With the increasing need to have faster product development and yet achieve the optimum design, thrust on accurate FEA of components and system is felt. The connecting rod is an important component of the crank train and it has a significant mass contribution in multi-cylinder engine. Principal focus is directed to connecting rods having load ratio greater than or equal to 2. As the connecting rod operates in elastic range (i.e. high cycle fatigue life region) stress life approach is adopted for fatigue life evaluation. The three fold purpose of this paper is to establish an accurate FE modelling technique and analysis procedure that simulates the test conditions, aids in accurate fatigue life prediction and most importantly provides a simple procedure for virtual validation of connecting rod. To achieve this objective static strain measurement and fatigue test of connecting rod is carried out on a test bench.
Technical Paper

Aerodynamic Drag Simulation and Validation of a Crossover

2010-04-12
2010-01-0757
Aerodynamic simulation using commercial CFD (Computational Fluid Dynamics) codes is now an integral part of the vehicle design process. Aerodynamic prediction and vehicle development program runs in parallel. This requires a good agreement between experimental measurements and CFD prediction of aerodynamic behavior of a vehicle. The comparison between experimental and simulation results show differences, as it may not be possible to replicate effect of all the wind tunnel parameters in the simulation. This paper presents the details of aerodynamic simulation process of a Crossover and its validation with the experimental results available from the wind tunnel tests. The results are compared for different configurations such as- closing the grille openings, removing the rearview mirror, adding ski-rack and using different tyres. This study also includes the effect of different wind speeds and yaw angles on the coefficient of drag.
Technical Paper

Simulation of Gear Shift Force Curve and Shift Rail Ramp Profile

2010-04-12
2010-01-0896
This paper presents a simulation for the gear shift process of a manual transmission, implemented using a library function. All the subsystem (i.e. synchronizer and the shift system) are correlated to generate a gear shift curve for optimum shift ability prediction of a manual transmission. A 5-speed manual transmission is used as an example in the paper to illustrate the simulation, co-relation and the validation of the gear shift performance curve on the vehicle. The dynamic behavior of the shift system and synchronizer in engaging and disengaging the gear is simulated through the gear shift characteristics to generate the shift rail's ramp profile. The synchronizer travel is co-related with the shift rail ramp profile to get a negative force after synchronization is over. The profile indicates the role of the detent ball diameter, radius on the shift rail ramp's profile etc and how it affects synchronizer force over the shift rail travel.
Technical Paper

Experiences in improving the Low end performance of a Multi Purpose Vehicle (MPV) equipped with a common rail Diesel engine.

2009-12-13
2009-28-0008
Continually increasing customer demands and legislative Requirements regarding fuel economy, emissions, Performance, drive ability and comfort need to be met by every OEM's developing vehicles worldwide. There is a serious pressure to reduce CO2 emission from automotive application which contributes to around 15.9% of the total CO2 production based on the Surveys done time to time. In a developing market like India, many foreign players are entering with lots of option for offering to this market. The parameters of prime importance here are fuel efficiency with good drive ability and at the same time affordable price. Diesel engines are finding these benefits and attracting the buyer over its counterpart (Gasoline). The road condition and the driving pattern in India compared with developed countries differ to a major extent. In India, the Low speed uses are predominating in Cities and in Ghats.
X